
GMRES-based iterative refinement in up to five
precisions

Speaker : Bastien Vieublé
Joint work with : Patrick Amestoy, Alfredo Buttari, Jean-Yves L’Excellent, Nicho-
las J. Higham, Theo Mary

SIAM CSE 2021

Generalized iterative refinement

Algorithm Generalized iterative refinement
1 : Compute the LU factorization A = LU (uf)
2 : Solve Ax0 = b (uf)
3 : while not converged do
4 : Compute ri = b− Axi (ur)
5 : Solve Adi = ri (us)

6 : Compute xi+1 = xi + di (u)
7 : end while

• The solver at step 5 is arbitrary.
• us expresses the precision of the computed solution di provided
by this solver (̸= unit roundoff of an arithmetic precision).

E. Carson and N. J. Higham. “Accelerating the solution of linear systems by iterative refi-
nement in three precisions”. In : SIAM, 2018.

1

Generalized iterative refinement

Algorithm Generalized iterative refinement
1 : Compute the LU factorization A = LU (uf)
2 : Solve Ax0 = b (uf)
3 : while not converged do
4 : Compute ri = b− Axi (ur)
5 : Solve Adi = ri (us)

6 : Compute xi+1 = xi + di (u)
7 : end while

Two main properties determined by the set of precisions :

• The convergence condition : the maximal value of κ(A) for
which convergence is guaranteed. (uf,us)

• The limiting accuracies : the accuracies at which the forward
and backward errors converge. (u,ur)

1

LU-IR3

Algorithm LU-based iterative refinement in three precisions
1 : Compute the LU factorization A = LU (uf)
2 : Solve Ax0 = b (uf)
3 : while not converged do
4 : Compute ri = b− Axi (ur)
5 : Solve Adi = ri by di = Û−1L̂−1ri. (uf)

6 : Compute xi+1 = xi + di (u)
7 : end while

Step 5 : Solver LU – us ≡ uf.

E. Carson and N. J. Higham. “Accelerating the solution of linear systems by iterative refi-
nement in three precisions”. In : SIAM, 2018.

2

LU-IR3

Algorithm LU-based iterative refinement in three precisions
1 : Compute the LU factorization A = LU (uf)
2 : Solve Ax0 = b (uf)
3 : while not converged do
4 : Compute ri = b− Axi (ur)
5 : Solve Adi = ri by di = Û−1L̂−1ri. (uf)

6 : Compute xi+1 = xi + di (u)
7 : end while

Convergence condition Forward error

LU-IR3 κ(A) < u−1
f urκ(A) + u

Very low precision factorization (e.g fp16, bfloat16) leads to a very
restrictive convergence condition for LU-IR3 (e.g 2× 103).

2

GMRES-IR3

Algorithm GMRES-based iterative refinement in three precisions
1 : Compute the LU factorization A = LU (uf)
2 : Solve Ax0 = b (uf)
3 : while not converged do
4 : Compute ri = b− Axi (ur)
5 : Solve Ãdi = Û−1L̂−1Adi = Û−1L̂−1ri by GMRES at precision (u)

with matrix vector products with Ã at precision (u2).
6 : Compute xi+1 = xi + di (u)
7 : end while

Step 5 : Preconditioned GMRES in two precision – us ≡ u.

E. Carson and N. J. Higham. “A new analysis of iterative refinement and its application
to accurate solution of ill-conditioned sparse linear systems”. In : SIAM, 2017.

3

GMRES-IR3

Algorithm GMRES-based iterative refinement in three precisions
1 : Compute the LU factorization A = LU (uf)
2 : Solve Ax0 = b (uf)
3 : while not converged do
4 : Compute ri = b− Axi (ur)
5 : Solve Ãdi = Û−1L̂−1Adi = Û−1L̂−1ri by GMRES at precision (u)

with matrix vector products with Ã at precision (u2).
6 : Compute xi+1 = xi + di (u)
7 : end while

Convergence condition Forward error

LU-IR3 κ(A) < u−1
f urκ(A) + u

GMRES-IR3 κ(A) < u−1/2u−1
f urκ(A) + u

If uf is fp16, then the condition on LU-IR3 is 2× 103, on GMRES-IR3
is 2× 1011 ! 3

Practical issues of GMRES-IR3

In GMRES-IR3, LU solves are performed at precision u2 : this is a
major practical issue.

• Increases cost per iteration.

• If u2 is fp128, requires a quad precision solver.

• Cast the LU factors from precision uf to precision u2

⇒ huge memory increase

Other issue : Do we need to run the other GMRES operations in
precision u ?

⇒ What if we relax the precision u2 on the preconditioning and u on
the rest of the operations?

4

Practical issues of GMRES-IR3

In GMRES-IR3, LU solves are performed at precision u2 : this is a
major practical issue.

• Increases cost per iteration.

• If u2 is fp128, requires a quad precision solver.

• Cast the LU factors from precision uf to precision u2

⇒ huge memory increase

Other issue : Do we need to run the other GMRES operations in
precision u ?

⇒ What if we relax the precision u2 on the preconditioning and u on
the rest of the operations?

4

Practical issues of GMRES-IR3

In GMRES-IR3, LU solves are performed at precision u2 : this is a
major practical issue.

• Increases cost per iteration.

• If u2 is fp128, requires a quad precision solver.

• Cast the LU factors from precision uf to precision u2

⇒ huge memory increase

Other issue : Do we need to run the other GMRES operations in
precision u ?

⇒ What if we relax the precision u2 on the preconditioning and u on
the rest of the operations?

4

GMRES-IR5

Algorithm GMRES-IR3
1 : Compute the LU factorization A = LU (uf)
2 : Solve Ax0 = b (uf)
3 : while not converged do
4 : Compute ri = b− Axi (ur)
5 : Solve Ãdi = Û−1L̂−1Adi = Û−1L̂−1ri by GMRES at precision (u)

with matrix vector products with Ã at precision (u2).
6 : Compute xi+1 = xi + di (u)
7 : end while

5

GMRES-IR5

Algorithm GMRES-IR3
1 : Compute the LU factorization A = LU (uf)
2 : Solve Ax0 = b (uf)
3 : while not converged do
4 : Compute ri = b− Axi (ur)
5 : Solve Ãdi = Û−1L̂−1Adi = Û−1L̂−1ri by GMRES at precision (u)

with matrix vector products with Ã at precision (u2).
6 : Compute xi+1 = xi + di (u)
7 : end while

5

GMRES-IR5

Algorithm GMRES-IR5
1 : Compute the LU factorization A = LU (uf)
2 : Solve Ax0 = b (uf)
3 : while not converged do
4 : Compute ri = b− Axi (ur)
5 : Solve Ãdi = Û−1L̂−1Adi = Û−1L̂−1ri by GMRES at precision (ug)

with matrix vector products with Ã at precision (up).
6 : Compute xi+1 = xi + di (u)
7 : end while

• up : precision at which we apply the preconditioned
matrix-vector products.

• ug : precision at which we apply the other GMRES operations.

Possibly up > u2 (and ug > u).
5

Preconditioned MGS-GMRES in 2 precisions

Theorem (Stability of preconditioned MGS-GMRES in 2 precisions)
Consider solving a preconditioned linear system

Ãd = s, Ã = Û−1L̂−1A, A ∈ Rn×n,

with a MGS-GMRES in precision ug except for the products with Ã applied in
precision up.

The computed solution d̂ achieves a backward error of order

us ≡ ug + upκ(A)

⇒ It generalizes the backward stability of MGS-GMRES to a
preconditioned MGS-GMRES in 2 precisions.

C. Paige, M. Rozložník and Z. Strakoš. “Modified Gram-Schmidt (MGS), least squares, and
backward stability of MGS-GMRES”. In : SIAM, 2006.

6

Convergence condition of GMRES-IR5

IR Convergence condition

LU-IR3 κ(A)uf ≪ 1

GMRES-IR5 (ug + upκ(A))κ(A)2u2
f ≪ 1

GMRES-IR3 κ(A)u1/2uf ≪ 1

If uf is fp16, the condition on LU-IR3 is 2 × 103, on GMRES-IR5 (with
ug = up = fp64) is 3× 107, on GMRES-IR3 is 2× 1011

7

Meaningful combinations

With five arithmetics (fp16, bfloat16, fp32, fp64, fp128) GMRES-IR5 can
be declined in over 3000 different combinations !

They are not all relevant !

Filter principle : Useless to have high precision when we can use low
precision without impacting the limiting accuracy and convergence
condition.

Filtering rules

• u2 ≤ ur ≤ u ≤ uf
• up ≤ ug
• up < uf

• up < u, up = u, and up > u
• ug = u and ug > u
• ug < uf, ug = uf, and ug > uf

These rules are based on the limiting accuracy and convergence
condition formulas.

8

Possible arithmetic precisons

ID Signif. bits Exp. bits Range Unit roundoff u

fp128 Q 113 15 10±4932 1× 10−34

fp64 D 53 11 10±308 1× 10−16

fp32 S 24 8 10±38 6× 10−8

fp16 H 11 5 10±5 5× 10−4

bfloat16 B 8 8 10±38 4× 10−3

9

Theoretical robustness over κ(A)

ug up Convergence Condition
max(κ(A))

LU-IR3 2× 103
B S 3× 104
H S 4× 104
H D 9× 104
S D 8× 106
D D 3× 107
GMRES-IR3 2× 1011

Meaningful combinations of GMRES-IR5 for uf = H and u = D.

Five combinations between LU-IR3 and GMRES-IR3 ⇒ More flexible
precisions choice to fit at best the hardware constraints and the
problem difficulty.

10

Experimental robustness over κ(A)

100 102 104 106 108 1010 1012 1014 1016

0.2
0.4
0.6
0.8
1.0

κ(A)

uf = H ug = D

LU-IR

We want to study the experimental robustness on κ(A) of the
following variants :

• u = D, ur = Q, and uf = H
fixed.

• GMRES precision ug,
preconditioning precision up
varying.

11

Experimental robustness over κ(A)

100 102 104 106 108 1010 1012 1014 1016

0.2
0.4
0.6
0.8
1.0

κ(A)

uf = H ug = D

LU-IR

Evaluate the robustness ? Success rate of convergence seems to be a
good measure.

It converges when it reaches the theoritical limiting accuracy (u = D
and ur = Q ⇒ forward error = 10−16).

11

Experimental robustness over κ(A)

100 102 104 106 108 1010 1012 1014 1016

0.2
0.4
0.6
0.8
1.0

κ(A)

uf = H ug = D

LU-IR

• Success rate of convergence of LU-IR3 and GMRES-IR5. Each
success rate computed from 100 50× 50 randsvd dense matrices.

• The more the breaking point of the success rate is high the
more the method is robust (ex : LU-IR ≈ 102 – 103).

11

Experimental robustness over κ(A)

100 102 104 106 108 1010 1012 1014 1016

0.2
0.4
0.6
0.8
1.0

κ(A)

uf = H ug = D

LU-IR

up = Q

• GMRES-IR5 with ug = D and up = Q far more robust on κ(A).

11

Experimental robustness over κ(A)

100 102 104 106 108 1010 1012 1014 1016

0.2
0.4
0.6
0.8
1.0

κ(A)

uf = H ug = D

LU-IR

up = D
up = Q

• When up = Q → D, lose really little in robustness.
⇒ No compromise by not using Q (maybe not hardware supported) !

11

Experimental robustness over κ(A)

100 102 104 106 108 1010 1012 1014 1016

0.2
0.4
0.6
0.8
1.0

κ(A)

uf = H ug = D

LU-IR
up = S
up = D
up = Q

• When up = D → S, lose in robustness but still far more robust than
LU-IR3.

11

Experimental robustness over κ(A)

100 102 104 106 108 1010 1012 1014 1016

0.2
0.4
0.6
0.8
1.0

κ(A)

uf = H ug = S

LU-IR
up = S
up = D
up = Q

• When ug = D → S :
• up = D and up = Q lose in robustness.
• up = S same as ug = D ⇒ better use ug = S.

11

Experimental robustness over κ(A)

100 102 104 106 108 1010 1012 1014 1016

0.2
0.4
0.6
0.8
1.0

κ(A)

uf = H ug = H

LU-IR
up = S
up = D
up = Q

• When ug = S → H, still more robust than LU-IR3 with ug in really
low precision.

11

Five-precisions combinations

100 102 104 106 108 1010 1012 1014 1016

0.2
0.4
0.6
0.8
1.0

κ(A)

uf = B ug = B up = S
uf = H ug = B up = S
uf = B ug = H up = S
uf = H ug = H up = S

2 five-precisions combinations meaningful theoretically :

(uf = B, u = D, ur = Q, ug = H, up = S) (uf = H, u = D, ur = Q, ug = B, up = S)

⇒ Tradeoff between 2 four-precisions combinations allowing even
finer setup of convergence conditions.

12

Cumulated number of LU solve calls (≈ nb iterations)

2 4 6 8 10

0.2

0.4

0.6

0.8

1.0

α

ρ

LU

ug = D up = Q

Performance profile on 230 little Suite Sparse real life matrices. ρ indicates the % of
matrices for which a given combination requires less than α times the number of LU
solves required by the best combination. uf = H fixed.

13

Cumulated number of LU solve calls (≈ nb iterations)

2 4 6 8 10

0.2

0.4

0.6

0.8

1.0

α

ρ

LU

ug = D up = D
ug = D up = Q

Performance profile on 230 little Suite Sparse real life matrices. ρ indicates the % of
matrices for which a given combination requires less than α times the number of LU
solves required by the best combination. uf = H fixed.

13

Cumulated number of LU solve calls (≈ nb iterations)

2 4 6 8 10

0.2

0.4

0.6

0.8

1.0

α

ρ

LU
ug = S up = S
ug = D up = D
ug = D up = Q

Performance profile on 230 little Suite Sparse real life matrices. ρ indicates the % of
matrices for which a given combination requires less than α times the number of LU
solves required by the best combination. uf = H fixed.

13

Conclusion

Contributions

• GMRES-IR5 + error analysis : high versatility on precisions
allowing better fit of precisions combinations according to
problem difficulty and hardware.

• Numerical experiments : Validate the theoretical convergence
condition on hundreds generated and real life matrices.

Future work : High performance parallel implementation within
distributed memory for the solution of sparse systems.

Amestoy, Buttari, Higham, L’Excellent, Mary, Vieublé. “Five precisions GMRES-based ite-
rative refinement”. In : Submission soon.

14

Sparse - Time Performance (No MPI - 18 threads)

ss

nl
pk

kt
80

Se
re
na

Ge
o_
14
38

Ch
ev

ro
n4

M
L_
Ge

er

Tr
an

sp
or
t

Bu
m
p_

29
11

va
s_
st
ok

es
_1
M

Ho
ok

_1
48

9

Qu
ee

n_
41
47

di
el
Fi
lte

rV
2r
ea

l

Fl
an

_1
56

5

Pfl
ow

_7
42

Cu
be

_C
ou

p_
dt
0

fe
m
_h

ifr
eq

_c
irc

ui
t

Lo
ng

_C
ou

p_
dt
0

0%

25%

50%

75%

100%

no
co

nv
er
ge

nc
e

no
co

nv
er
ge

nc
e

LU-IR time GMRES-IR time

LU-IR uf = S Vs GMRES-IR uf = S ug = D up = D normalized by LU direct solver in full
D ; multifrontal solver MUMPS ;

• LU-IR 1.4 –1.7× faster on
most of the matrices !

• GMRES-IR slower than LU-IR,
but converges on all the
matrices ⇒ more robust. 15

