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Generalized iterative refinement

Algorithm Generalized iterative refinement
1 : Compute the LU factorization A = LU (uf)
2 : Solve Ax0 = b (uf)
3 : while not converged do
4 : Compute ri = b− Axi (ur)
5 : Solve Adi = ri (us)

6 : Compute xi+1 = xi + di (u)
7 : end while

• The solver at step 5 is arbitrary.
• us expresses the precision of the computed solution di provided
by this solver ( ̸= unit roundoff of an arithmetic precision).

E. Carson and N. J. Higham. “Accelerating the solution of linear systems by iterative refi-
nement in three precisions”. In : SIAM, 2018.
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Generalized iterative refinement

Algorithm Generalized iterative refinement
1 : Compute the LU factorization A = LU (uf)
2 : Solve Ax0 = b (uf)
3 : while not converged do
4 : Compute ri = b− Axi (ur)
5 : Solve Adi = ri (us)

6 : Compute xi+1 = xi + di (u)
7 : end while

Two main properties determined by the set of precisions :

• The convergence condition : the maximal value of κ(A) for
which convergence is guaranteed. (uf,us)

• The limiting accuracies : the accuracies at which the forward
and backward errors converge. (u,ur)
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LU-IR3

Algorithm LU-based iterative refinement in three precisions
1 : Compute the LU factorization A = LU (uf)
2 : Solve Ax0 = b (uf)
3 : while not converged do
4 : Compute ri = b− Axi (ur)
5 : Solve Adi = ri by di = Û−1L̂−1ri. (uf)

6 : Compute xi+1 = xi + di (u)
7 : end while

Step 5 : Solver LU – us ≡ uf.

E. Carson and N. J. Higham. “Accelerating the solution of linear systems by iterative refi-
nement in three precisions”. In : SIAM, 2018.
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LU-IR3

Algorithm LU-based iterative refinement in three precisions
1 : Compute the LU factorization A = LU (uf)
2 : Solve Ax0 = b (uf)
3 : while not converged do
4 : Compute ri = b− Axi (ur)
5 : Solve Adi = ri by di = Û−1L̂−1ri. (uf)

6 : Compute xi+1 = xi + di (u)
7 : end while

Convergence condition Forward error

LU-IR3 κ(A) < u−1
f urκ(A) + u

Very low precision factorization (e.g fp16, bfloat16) leads to a very
restrictive convergence condition for LU-IR3 (e.g 2× 103).
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GMRES-IR3

Algorithm GMRES-based iterative refinement in three precisions
1 : Compute the LU factorization A = LU (uf)
2 : Solve Ax0 = b (uf)
3 : while not converged do
4 : Compute ri = b− Axi (ur)
5 : Solve Ãdi = Û−1L̂−1Adi = Û−1L̂−1ri by GMRES at precision (u)

with matrix vector products with Ã at precision (u2).
6 : Compute xi+1 = xi + di (u)
7 : end while

Step 5 : Preconditioned GMRES in two precision – us ≡ u.

E. Carson and N. J. Higham. “A new analysis of iterative refinement and its application
to accurate solution of ill-conditioned sparse linear systems”. In : SIAM, 2017.
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GMRES-IR3

Algorithm GMRES-based iterative refinement in three precisions
1 : Compute the LU factorization A = LU (uf)
2 : Solve Ax0 = b (uf)
3 : while not converged do
4 : Compute ri = b− Axi (ur)
5 : Solve Ãdi = Û−1L̂−1Adi = Û−1L̂−1ri by GMRES at precision (u)

with matrix vector products with Ã at precision (u2).
6 : Compute xi+1 = xi + di (u)
7 : end while

Convergence condition Forward error

LU-IR3 κ(A) < u−1
f urκ(A) + u

GMRES-IR3 κ(A) < u−1/2u−1
f urκ(A) + u

If uf is fp16, then the condition on LU-IR3 is 2× 103, on GMRES-IR3
is 2× 1011 ! 3



Practical issues of GMRES-IR3

In GMRES-IR3, LU solves are performed at precision u2 : this is a
major practical issue.

• Increases cost per iteration.

• If u2 is fp128, requires a quad precision solver.

• Cast the LU factors from precision uf to precision u2

⇒ huge memory increase

Other issue : Do we need to run the other GMRES operations in
precision u ?

⇒ What if we relax the precision u2 on the preconditioning and u on
the rest of the operations?
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GMRES-IR5

Algorithm GMRES-IR3
1 : Compute the LU factorization A = LU (uf)
2 : Solve Ax0 = b (uf)
3 : while not converged do
4 : Compute ri = b− Axi (ur)
5 : Solve Ãdi = Û−1L̂−1Adi = Û−1L̂−1ri by GMRES at precision (u )

with matrix vector products with Ã at precision (u2).
6 : Compute xi+1 = xi + di (u)
7 : end while
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GMRES-IR5

Algorithm GMRES-IR5
1 : Compute the LU factorization A = LU (uf)
2 : Solve Ax0 = b (uf)
3 : while not converged do
4 : Compute ri = b− Axi (ur)
5 : Solve Ãdi = Û−1L̂−1Adi = Û−1L̂−1ri by GMRES at precision (ug)

with matrix vector products with Ã at precision (up).
6 : Compute xi+1 = xi + di (u)
7 : end while

• up : precision at which we apply the preconditioned
matrix-vector products.

• ug : precision at which we apply the other GMRES operations.

Possibly up > u2 (and ug > u).
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Preconditioned MGS-GMRES in 2 precisions

Theorem (Stability of preconditioned MGS-GMRES in 2 precisions)
Consider solving a preconditioned linear system

Ãd = s, Ã = Û−1L̂−1A, A ∈ Rn×n,

with a MGS-GMRES in precision ug except for the products with Ã applied in
precision up.

The computed solution d̂ achieves a backward error of order

us ≡ ug + upκ(A)

⇒ It generalizes the backward stability of MGS-GMRES to a
preconditioned MGS-GMRES in 2 precisions.

C. Paige, M. Rozložník and Z. Strakoš. “Modified Gram-Schmidt (MGS), least squares, and
backward stability of MGS-GMRES”. In : SIAM, 2006.
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Convergence condition of GMRES-IR5

IR Convergence condition

LU-IR3 κ(A)uf ≪ 1

GMRES-IR5 (ug + upκ(A))κ(A)2u2
f ≪ 1

GMRES-IR3 κ(A)u1/2uf ≪ 1

If uf is fp16, the condition on LU-IR3 is 2 × 103, on GMRES-IR5 (with
ug = up = fp64) is 3× 107, on GMRES-IR3 is 2× 1011
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Meaningful combinations

With five arithmetics (fp16, bfloat16, fp32, fp64, fp128) GMRES-IR5 can
be declined in over 3000 different combinations !

They are not all relevant !

Filter principle : Useless to have high precision when we can use low
precision without impacting the limiting accuracy and convergence
condition.

Filtering rules

• u2 ≤ ur ≤ u ≤ uf
• up ≤ ug
• up < uf

• up < u, up = u, and up > u
• ug = u and ug > u
• ug < uf, ug = uf, and ug > uf

These rules are based on the limiting accuracy and convergence
condition formulas.
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Possible arithmetic precisons

ID Signif. bits Exp. bits Range Unit roundoff u

fp128 Q 113 15 10±4932 1× 10−34

fp64 D 53 11 10±308 1× 10−16

fp32 S 24 8 10±38 6× 10−8

fp16 H 11 5 10±5 5× 10−4

bfloat16 B 8 8 10±38 4× 10−3
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Theoretical robustness over κ(A)

ug up Convergence Condition
max(κ(A))

LU-IR3 2× 103
B S 3× 104
H S 4× 104
H D 9× 104
S D 8× 106
D D 3× 107
GMRES-IR3 2× 1011

Meaningful combinations of GMRES-IR5 for uf = H and u = D.

Five combinations between LU-IR3 and GMRES-IR3 ⇒ More flexible
precisions choice to fit at best the hardware constraints and the
problem difficulty.
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Experimental robustness over κ(A)

100 102 104 106 108 1010 1012 1014 1016

0.2
0.4
0.6
0.8
1.0

κ(A)

uf = H ug = D

LU-IR

We want to study the experimental robustness on κ(A) of the
following variants :

• u = D, ur = Q, and uf = H
fixed.

• GMRES precision ug,
preconditioning precision up
varying.
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Experimental robustness over κ(A)

100 102 104 106 108 1010 1012 1014 1016

0.2
0.4
0.6
0.8
1.0

κ(A)

uf = H ug = D

LU-IR

Evaluate the robustness ? Success rate of convergence seems to be a
good measure.

It converges when it reaches the theoritical limiting accuracy (u = D
and ur = Q ⇒ forward error = 10−16).
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Experimental robustness over κ(A)

100 102 104 106 108 1010 1012 1014 1016

0.2
0.4
0.6
0.8
1.0

κ(A)

uf = H ug = D

LU-IR

• Success rate of convergence of LU-IR3 and GMRES-IR5. Each
success rate computed from 100 50× 50 randsvd dense matrices.

• The more the breaking point of the success rate is high the
more the method is robust (ex : LU-IR ≈ 102 – 103).
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Experimental robustness over κ(A)

100 102 104 106 108 1010 1012 1014 1016

0.2
0.4
0.6
0.8
1.0

κ(A)

uf = H ug = D

LU-IR

up = Q

• GMRES-IR5 with ug = D and up = Q far more robust on κ(A).
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Experimental robustness over κ(A)

100 102 104 106 108 1010 1012 1014 1016

0.2
0.4
0.6
0.8
1.0

κ(A)

uf = H ug = D

LU-IR

up = D
up = Q

• When up = Q → D, lose really little in robustness.
⇒ No compromise by not using Q (maybe not hardware supported) !
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Experimental robustness over κ(A)

100 102 104 106 108 1010 1012 1014 1016

0.2
0.4
0.6
0.8
1.0

κ(A)

uf = H ug = D

LU-IR
up = S
up = D
up = Q

• When up = D → S, lose in robustness but still far more robust than
LU-IR3.
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Experimental robustness over κ(A)

100 102 104 106 108 1010 1012 1014 1016

0.2
0.4
0.6
0.8
1.0

κ(A)

uf = H ug = S

LU-IR
up = S
up = D
up = Q

• When ug = D → S :
• up = D and up = Q lose in robustness.
• up = S same as ug = D ⇒ better use ug = S.
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Experimental robustness over κ(A)

100 102 104 106 108 1010 1012 1014 1016

0.2
0.4
0.6
0.8
1.0

κ(A)

uf = H ug = H

LU-IR
up = S
up = D
up = Q

• When ug = S → H, still more robust than LU-IR3 with ug in really
low precision.
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Five-precisions combinations

100 102 104 106 108 1010 1012 1014 1016

0.2
0.4
0.6
0.8
1.0

κ(A)

uf = B ug = B up = S
uf = H ug = B up = S
uf = B ug = H up = S
uf = H ug = H up = S

2 five-precisions combinations meaningful theoretically :

(uf = B, u = D, ur = Q, ug = H, up = S) (uf = H, u = D, ur = Q, ug = B, up = S)

⇒ Tradeoff between 2 four-precisions combinations allowing even
finer setup of convergence conditions.
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Cumulated number of LU solve calls (≈ nb iterations)
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Performance profile on 230 little Suite Sparse real life matrices. ρ indicates the % of
matrices for which a given combination requires less than α times the number of LU
solves required by the best combination. uf = H fixed.
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Performance profile on 230 little Suite Sparse real life matrices. ρ indicates the % of
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Conclusion

Contributions

• GMRES-IR5 + error analysis : high versatility on precisions
allowing better fit of precisions combinations according to
problem difficulty and hardware.

• Numerical experiments : Validate the theoretical convergence
condition on hundreds generated and real life matrices.

Future work : High performance parallel implementation within
distributed memory for the solution of sparse systems.

Amestoy, Buttari, Higham, L’Excellent, Mary, Vieublé. “Five precisions GMRES-based ite-
rative refinement”. In : Submission soon.
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Sparse - Time Performance (No MPI - 18 threads)
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LU-IR uf = S Vs GMRES-IR uf = S ug = D up = D normalized by LU direct solver in full
D ; multifrontal solver MUMPS ;

• LU-IR 1.4 –1.7× faster on
most of the matrices !

• GMRES-IR slower than LU-IR,
but converges on all the
matrices ⇒ more robust. 15


