Mixed precision iterative refinement

Bastien Vieublé 01/02/2023

Department of mathematics, University of Manchester

2015 to 2019

Engineering school, ENSEEIHT

Computer science and applied math

Who am I?

Who am I?

2015
to 2019Engineering school, ENSEEIHT
Computer science and applied mathSep. 2017
to Sep. 2018Gap year, CNRS-IPAL
Human-machine interfaceApr. 2019
to Sep. 2019Internship, Academy of Sciences
Machine learning

Who am I?

2015 to 2019 Sep. 2017 to Sep. 2018 Apr. 2019 to Sep. 2019 to Sep. 2019 Oct. 2019

Engineering school, ENSEEIHT

Computer science and applied math

Gap year, CNRS-IPAL Human-machine interface

Internship, Academy of Sciences Machine learning

Oct. 2019 to Oct. 2022

PhD student, IRIT

Numerical analysis and high performance computing

2015 Engineering school, ENSEEIHT to 2019 Computer science and applied math Sep. 2017 Gap year, CNRS-IPAL to Sep. 2018 Human-machine interface Apr. 2019 Internship, Academy of Sciences to Sep. 2019 Machine learning Oct. 2019 PhD student, IRIT to Oct 2022 Numerical analysis and high performance computing Nov 2022 Post-doc, University of Manchester to Now Numerical analysis and high performance computing

On solving linear systems

$$Ax = b,$$

$$A \in \mathbb{R}^{n \times n}, \quad b \in \mathbb{R}^{n}, \quad x \in \mathbb{R}^{n}$$

$$Ax = b,$$

$$A \in \mathbb{R}^{n \times n}, \quad b \in \mathbb{R}^{n}, \quad x \in \mathbb{R}^{n}$$

Physicists are extremely good clients of linear solvers!

This is because they describe many of their problems in term of **differential equations**. Generally, an analytic solution is only available for the simplest cases. Therefore, solving their differential equations often involve the **discretization** of the problem to transform it into a linear system.

They are generally not much aware of the **numerical difficulties**, the **parallelism**, the **computer hardware**, or the **different algorithms** to solve their linear systems.

 \Rightarrow This is our job!

$$Ax = b,$$

$$A \in \mathbb{R}^{n \times n}, \quad b \in \mathbb{R}^{n}, \quad x \in \mathbb{R}^{n}$$

$$Ax = b,$$

$$A \in \mathbb{R}^{n \times n}, \quad b \in \mathbb{R}^{n}, \quad x \in \mathbb{R}^{n}$$

$\begin{aligned} Ax &= b, \\ A \in \mathbb{R}^{n \times n}, \quad b \in \mathbb{R}^n, \quad x \in \mathbb{R}^n \end{aligned}$

Fat problems require fat computers!

Large-scale linear systems...

Up to **billions of unknowns**, applications demanding enormous amount of memory and flops of computation.

For a dense problem of size $n = 10^7$, storing the matrix requires **TBytes of** memory, factorizing the matrix requires **Exaflops of computation**!

...require large-scale computers.

Increasingly **large numbers of cores** available, high **heterogeneity in the computation** (CPU, GPU, FPGA, TPU, etc), and high **heterogeneity in data motions** (RAM to cache, disk to RAM, node to node, etc).

Two main kinds of solvers

What are the ways to solve a sparse $Ax = b \in \mathbb{R}^n$ on computers?

Iterative solvers

Compute a sequence of x_k converging towards x.

Examples: Gauss-Seidel, SOR, Krylov subspace methods, etc.

> Low computational cost and memory consumption if the convergence is quick...

> BUT convergence depends on the matrix properties.

Direct solvers

Based on a factorization of A. Examples: LDL^T, LU, QR, etc.

- > High computational cost and memory consumption...
- BUT they are robust and easy to use.

Two main kinds of solvers

What are the ways to solve a sparse $Ax = b \in \mathbf{R}^n$ on computers?

Iterative solvers

Compute a sequence of x_k converging towards x.

Examples: Gauss-Seidel, SOR, Krylov subspace methods, etc.

> Low computational cost and memory consumption if the convergence is quick...

BUT convergence depends on the matrix properties.

Direct solvers

Based on a factorization of A. Examples: LDL^T, LU, QR, etc.

- > High computational cost and memory consumption...
- BUT they are robust and easy to use.

\Rightarrow For both, the reduction of the computational cost is the focus of much research.

Approximate computing: deliberately approximate the computations in order to improve the performance at the cost of introducing a perturbation.

► The perturbed problem should be close to the original one and should reduce time and/or memory!

- > In general the larger the perturbations the larger the savings...
- BUT large perturbations = low accuracy!

In this course, we focus one particular kind of approximate computing techniques: the employment **low precision arithmetics**.

Low precision arithmetics

Introduction to floating point numbers

Floating point format

Main format for representing real numbers in computers. A number is of the form:

 $x = \pm m \times \beta^{e}$

Base β (usually 2).

 \pm is the bit of sign.

The mantissa *m* is an integer represented in base β .

The **exponent** e is an integer represented in base β .

- The mantissa carries the significant digits (i.e., how accurate can be the numbers).
- The exponent carries the range (i.e., how far is the lowest and highest representable number).

$$723 = +\underbrace{14723}_{\text{mantissa}} \times \underbrace{10}_{\beta} \qquad , \qquad -92 = -\underbrace{010111}_{23} \times \underbrace{2}_{\beta}$$

Introduction to floating point numbers

Floating point format

Main format for representing real numbers in computers. A number is of the form:

 $x = \pm m \times \beta^{e}$

Base β (usually 2).

 \pm is the bit of sign.

The **mantissa** *m* is an integer represented in base β .

The **exponent** e is an integer represented in base β .

The unit roundoff u determines the relative accuracy any number in the representable range $[e_{\min}, e_{\max}]$ can be approximated with:

 $\forall x \in [e_{\min}, e_{\max}] \subset \mathbf{R}, \quad \mathsf{fl}(x) = x(1 + \delta), \quad |\delta| \le u,$

where fI(x) is the floating point representation of a real number x, and δ the relative difference between this representation and x.

The condition number of a matrix is a measure of its "numerical difficulty". We will use the two quantities

 $\kappa(A) = ||A|| ||A^{-1}||, \quad \text{cond}(A) = ||A||A^{-1}|||.$

The higher is $\kappa(A)$, the larger the errors on the computed solution, or the higher the number of iterations (in iterative solvers).

Suppose we are solving a linear system Ax = b with a computer, due to the finite representation of numbers and accumulation of errors we cannot provide the true *x*, we then call the **computed solution** \hat{x} .

We define the (relative) forward error of our computed solution as

$$fwd = \frac{\|\hat{x} - x\|}{\|x\|}.$$

	ID	Signif. bits	Exp. bits	Range	Unit roundoff u
fp128	Q	113	15	10 ^{±4932}	1×10^{-34}
double-fp64	DD	107	11	10 ^{±308}	6×10^{-33}
fp64	D	53	11	10 ^{±308}	1×10^{-16}
fp32	S	24	8	10 ^{±38}	6×10^{-8}
tfloat32	Т	11	8	10 ^{±38}	5×10^{-4}
fp16	Н	11	5	10 ^{±5}	5×10^{-4}
bfloat16	В	8	8	10 ^{±38}	4×10^{-3}
fp8 (E4M3)	R	4	4	10 ^{±2}	6.3×10^{-2}
fp8 (E5M2)	R*	3	5	10 ^{±5}	1.3×10^{-1}

Low precision arithmetics

Low precision arithmetics are **less accurate** and present a **narrower range**. BUT they have 3 main advantages:

➤ Storage, data movement and communications are all proportional to the total number of bits. ⇒ Time and memory savings!

- ➤ Speed of computation is also at least proportional to the total number of bits. ⇒ Time savings!
- Power consumption is dependent on the number of bits.
 ⇒ Energy savings!

As reducing time, memory, and energy consumption are all challenging objectives for the ease of high performance computing, low arithmetic precisions has become the Wild West of HPC!

The fundamental issue of low precision arithmetics

Problem

► Low precision arithmetics can greatly **improve performance** of linear solvers...

► BUT they **degrade their accuracy** at the same time.

➤ Unfortunately application experts generally require high accuracy on the solution (i.e., most commonly double precision accuracy).

Idea: What if we could use low precisions to accelerate the most expensive parts of the computation, and use higher precision only on some strategic operations to recover the lost accuracy at low cost?

The fundamental issue of low precision arithmetics

Problem

► Low precision arithmetics can greatly **improve performance** of linear solvers...

► BUT they **degrade their accuracy** at the same time.

➤ Unfortunately application experts generally require high accuracy on the solution (i.e., most commonly double precision accuracy).

Idea: What if we could use low precisions to accelerate the most expensive parts of the computation, and use higher precision only on some strategic operations to recover the lost accuracy at low cost?

 \Rightarrow This is the goal of **mixed precision algorithms**!

Introduction to iterative refinement

Newton's method for correcting the solution of linear systems

Newton's method consists in building approximations $x_i \in \mathbb{R}^n$ converging toward a zero x of a differentiable function $f : \mathbb{R}^n \to \mathbb{R}^n$:

$$x_{i+1} = x_i - (\nabla f(x_i))^{-1} f(x_i).$$

Newton's method for correcting the solution of linear systems

Newton's method consists in building approximations $x_i \in \mathbb{R}^n$ converging toward a zero x of a differentiable function $f : \mathbb{R}^n \to \mathbb{R}^n$:

$$x_{i+1} = x_i - (\nabla f(x_i))^{-1} f(x_i).$$

We can correct the solution of linear systems by applying Newton's method to the residual f(x) = Ax - b. The procedure becomes

$$x_{i+1} = x_i + A^{-1}(b - Ax_i),$$

and can be decomposed into three steps

(1) Computing the residual: $r_i = b - Ax_i$ (2) Solving the correction equation: $Ad_i = r_i$ (3) Updating the solution: $x_{i+1} = x_i + d_i$.

Newton's method for correcting the solution of linear systems

Newton's method consists in building approximations $x_i \in \mathbb{R}^n$ converging toward a zero x of a differentiable function $f : \mathbb{R}^n \to \mathbb{R}^n$:

$$x_{i+1} = x_i - (\nabla f(x_i))^{-1} f(x_i).$$

We can correct the solution of linear systems by applying Newton's method to the residual f(x) = Ax - b. The procedure becomes

$$x_{i+1} = x_i + A^{-1}(b - Ax_i),$$

and can be decomposed into three steps

(1) Computing the residual: $r_i = b - Ax_i$ (2) Solving the correction equation: $Ad_i = r_i$ (3) Updating the solution: $x_{i+1} = x_i + d_i$.

Newton's method for the correction of linear systems is called **iterative refinement**.

(1) Computing the residual: $r_i = b - Ax_i$ (2) Solving the correction equation: $Ad_i = r_i$ (3) Updating the solution: $x_{i+1} = x_i + d_i$.

In exact arithmetic and without errors, the iterative refinement procedure gives the solution $x = A^{-1}b$ in one iteration!

(1) Computing the residual: $r_i = b - Ax_i$ (2) Solving the correction equation: $Ad_i = r_i$ (3) Updating the solution: $x_{i+1} = x_i + d_i$.

In exact arithmetic and without errors, the iterative refinement procedure gives the solution $x = A^{-1}b$ in one iteration!

However, on computers, every step is computed in **inexact arithmetic** and approximate computing techniques can be used, which lead to the presence of computing errors in every of these steps.

 \Rightarrow What is the impact of these errors in the procedure ?

(1) Computing the residual: $r_i = b - Ax_i$ (2) Solving the correction equation: $Ad_i = r_i$ (3) Updating the solution: $x_{i+1} = x_i + d_i$.

(1) Computing the residual :	$r_i = b - Ax_i$
(2) Solving the correction equation :	$Ad_i = r_i$
(3) Updating the solution:	$x_{i+1} = x_i + d_i.$

(1) Computing the residual: $r_i = b - Ax_i$ (2) Solving the correction equation: $Ad_i = r_i$ (3) Updating the solution: $x_{i+1} = x_i + d_i$.

(1) Computing the residual: $r_i = b - Ax_i$ (2) Solving the correction equation: $Ad_i = r_i$ (3) Updating the solution: $x_{i+1} = x_i + d_i$.

(1) Computing the residual: $r_i = b - Ax_i$ (2) Solving the correction equation: $Ad_i = r_i$ (3) Updating the solution: $x_{i+1} = x_i + d_i$.

(1) Computing the residual: $r_i = b - Ax_i$ (2) Solving the correction equation: $Ad_i = r_i$ (3) Updating the solution: $x_{i+1} = x_i + d_i$.

(1) Computing the residual :	$r_i = b - Ax_i$
(2) Solving the correction equation :	$Ad_i = r_i$
(3) Updating the solution:	$x_{i+1} = x_i + d_i.$

(1) Computing the residual: $r_i = b - Ax_i$ (2) Solving the correction equation: $Ad_i = r_i$ (3) Updating the solution: $x_{i+1} = x_i + d_i$.

(1) Computing the residual: $r_i = b - Ax_i$ (2) Solving the correction equation: $Ad_i = r_i$ (3) Updating the solution: $x_{i+1} = x_i + d_i$

Historical perspectives

(1) Computing the residual: $r_i = b - Ax_i$ (2) Solving the correction equation: $Ad_i = r_i$ (3) Updating the solution: $x_{i+1} = x_i + d_i$.

Iterative refinement has been used for more than **70 years**. It has **constantly been evolving over time**, repeatedly reconsidered according to trends, researcher's interests, and hardware specifications, as well as the computing challenges of each computing era.

Historical perspectives

(1) Computing the residual: $r_i = b - Ax_i$ (2) Solving the correction equation: $Ad_i = r_i$ (3) Updating the solution: $x_{i+1} = x_i + d_i$.

Iterative refinement has been used for more than **70 years**. It has **constantly been evolving over time**, repeatedly reconsidered according to trends, researcher's interests, and hardware specifications, as well as the computing challenges of each computing era.

⇒ History can give us a better understanding of *why* and *how* we use this algorithm today!

From the 40s to the 70s

Origin

(1) Computing the residual:(2) Solving the correction equation:(3) Updating the solution:

Iterative refinement was implemented on the first computers!

 "Progress report on the Automatic Computing Engine" by James H. Wilkinson, 1948.

$$r_i = b - Ax_i$$
$$Ad_i = r_i$$
$$x_{i+1} = x_i + d_i.$$

Pilot ACE - One of the first computers, designed by Alan Turing.

Origin

(1) Computing the residual:(2) Solving the correction equation:(3) Updating the solution:

Iterative refinement was implemented on the first computers!

The fatherhood is generally attributed to James H. Wilkinson who first described, implemented, and reported the algorithm into a document.

 "Progress report on the Automatic Computing Engine" by James H. Wilkinson, 1948.

$$r_i = b - Ax_i$$
$$Ad_i = r_i$$
$$_{i+1} = x_i + d_i.$$

James H. Wilkinson

(1) Computing the residual: $r_i = b - Ax_i$ (2) Solving the correction equation: $Ad_i = r_i$ (3) Updating the solution: $x_{i+1} = x_i + d_i$.

1st element of context - Special hardware design of that time allowed costless accumulation of inner products in extra precision.

(1) Computing the residual: $r_i = b - Ax_i$ (extra)(2) Solving the correction equation: $Ad_i = r_i$ (working)(3) Updating the solution: $x_{i+1} = x_i + d_i$. (working)

1st element of context - Special hardware design of that time allowed costless accumulation of inner products in extra precision.

 \Rightarrow The residual could be computed in extra precision, the correction equation and the update are computed in working precision. It removes the effect of the conditionning of the problem (i.e., $\kappa(A)$) on the error.

(1) Computing the residual: $r_i = b - Ax_i$ (extra)(2) Solving the correction equation: $Ad_i = r_i$ (working)(3) Updating the solution: $x_{i+1} = x_i + d_i$. (working)

1st element of context - Special hardware design of that time allowed costless accumulation of inner products in extra precision.

 \Rightarrow The residual could be computed in extra precision, the correction equation and the update are computed in working precision. It removes the effect of the conditionning of the problem (i.e., $\kappa(A)$) on the error.

Mixed precision is not a new idea!

(1) Computing the residual: $r_i = b - Ax_i$ (extra)(2) Solving the correction equation: $Ad_i = r_i$ (working)(3) Updating the solution: $x_{i+1} = x_i + d_i$. (working)

2nd element of context - Iterative refinement was focused on improving stable **direct solvers** (e.g., LU with partial pivoting)

(1) Computing the residual:
(2) Solving the correction equation:
(3) Updating the solution:

 $r_i = b - Ax_i \quad (extra)$ $d_i = U \ L \ r_i \quad (working)$ $x_{i+1} = x_i + d_i. \quad (working)$

2nd element of context - Iterative refinement was focused on improving stable **direct solvers** (e.g., LU with partial pivoting)

(1) Computing the residual:(2) Solving the correction equation:(3) Updating the solution:

 $\begin{aligned} r_i &= b - Ax_i \quad (\text{extra}) \\ d_i &= U \setminus L \setminus r_i \quad (\text{working}) \\ x_{i+1} &= x_i + d_i. \quad (\text{working}) \end{aligned}$

2nd element of context - Iterative refinement was focused on improving stable **direct solvers** (e.g., LU with partial pivoting) because

Iterative solvers were not so trendy (less robust and reliable, and not particularly better in performance on low dimensional problems of this time).

(1) Computing the residual:
(2) Solving the correction equation:
(3) Updating the solution:

 $\begin{aligned} r_i &= b - Ax_i \quad (\text{extra}) \\ d_i &= U \setminus L \setminus r_i \quad (\text{working}) \\ x_{i+1} &= x_i + d_i. \quad (\text{working}) \end{aligned}$

2nd element of context - Iterative refinement was focused on improving stable **direct solvers** (e.g., LU with partial pivoting) because

Iterative solvers were not so trendy (less robust and reliable, and not particularly better in performance on low dimensional problems of this time).

➤ It is computationaly interesting: the factorization $(O(n^3))$ (e.g. LU, QR) can be computed once, and the solve $(O(n^2))$ applied multiple times \Rightarrow Refinement iterations are cheap!

(1) Computing the residual: $r_i = b - Ax_i$ (extra)(2) Solving the correction equation: $d_i = U \setminus L \setminus r_i$ (working)(3) Updating the solution: $x_{i+1} = x_i + d_i$. (working)

All the studies of this period match this form of iterative refinement.

! "Notes on the solution of algebraic linear simultaneous equations" by **Leslie Fox et al.**, 1948.

"On the improvement of the solutions to a set of simultaneous linear equations using the ILLIAC" by **James N. Snyder**, 1955.

"Note on the iterative refinement of least squares solution" by Gene H. Golub and James H. Wilkinson, 1966.

[] "Solution of real and complex systems of linear equations" by **Hilary J. Bowdler et al.**, 1966.

📃 "Iterative refinement of linear least squares solutions I" by Åke Björck, 1967.

(1) Computing the residual:
(2) Solving the correction equation:
(3) Updating the solution:

 $\begin{aligned} r_i &= b - Ax_i \quad (\text{extra}) \\ d_i &= U \setminus L \setminus r_i \quad (\text{working}) \\ x_{i+1} &= x_i + d_i. \quad (\text{working}) \end{aligned}$

"Since none of the numbers which we take out from logarithmic and trigonometric tables admit of absolute precision, but are all to a certain extent approximate only, the results of all calculations performed by the aid of these numbers can only be approximately true ..." **C. F. Gauss**, 1809. (1) Computing the residual:
(2) Solving the correction equation:
(3) Updating the solution:

 $\begin{aligned} r_i &= b - Ax_i \quad (\text{extra}) \\ d_i &= U \setminus L \setminus r_i \quad (\text{working}) \\ x_{i+1} &= x_i + d_i. \quad (\text{working}) \end{aligned}$

"Since none of the numbers which we take out from logarithmic and trigonometric tables admit of absolute precision, but are all to a certain extent approximate only, the results of all calculations performed by the aid of these numbers can only be approximately true ..." **C. F. Gauss**, 1809.

⇒ The role of the error analysis is to discover to what extent these calculations are approximately true!

Error analyses

(1) Computing the residual:
(2) Solving the correction equation:
(3) Updating the solution:

 $\begin{aligned} r_i &= b - Ax_i \quad \text{(extra)} \\ d_i &= U \setminus L \setminus r_i \quad \text{(working)} \\ x_{i+1} &= x_i + d_i. \quad \text{(working)} \end{aligned}$

Rounding error analysis on iterative refinement aim at both:

► Highlight under which conditions the solution can be improved by refinement. This is referred to as convergence conditions.

Demonstrate to what accuracy the solution will be refined. This is referred to as limiting accuracies.

Error analyses

(1) Computing the residual:
(2) Solving the correction equation:
(3) Updating the solution:

 $\begin{aligned} r_i &= b - Ax_i \quad \text{(extra)} \\ d_i &= U \setminus L \setminus r_i \quad \text{(working)} \\ x_{i+1} &= x_i + d_i. \quad \text{(working)} \end{aligned}$

Rounding error analysis on iterative refinement aim at both:

➤ Highlight under which conditions the solution can be improved by refinement. This is referred to as convergence conditions.

Demonstrate to what accuracy the solution will be refined. This is referred to as limiting accuracies.

The first two error analyses of iterative refinement were conducted by Wilkinson and Moler for, resp., fixed point and floating point arithmetics.

📃 "Rounding Errors in Algebraic Processes" by James H. Wilkinson, 1963.

E "Iterative refinement in floating point" by **Cleve B. Moler**, 1967.

From the 70s to the 2000s

(1) Computing the residual: $r_i = b - Ax_i$ (2) Solving the correction equation: $Ad_i = r_i$ (3) Updating the solution: $x_{i+1} = x_i + d_i$.

Hardware and software changes reshape the way we use iterative refinement:

(1) Computing the residual: $r_i = b - Ax_i$ (2) Solving the correction equation: $Ad_i = r_i$ (3) Updating the solution: $x_{i+1} = x_i + d_i$.

Hardware and software changes reshape the way we use iterative refinement:

Accumulation of the inner products in extra precision was not widely available across machines anymore.

(1) Computing the residual: $r_i = b - Ax_i$ (2) Solving the correction equation: $Ad_i = r_i$ (3) Updating the solution: $x_{i+1} = x_i + d_i$.

Hardware and software changes reshape the way we use iterative refinement:

Accumulation of the inner products in extra precision was not widely available across machines anymore.

► Single precision (fp32) was not substantially faster than double precision (fp64).

(1) Computing the residual: $r_i = b - Ax_i$ (2) Solving the correction equation: $Ad_i = r_i$ (3) Updating the solution: $x_{i+1} = x_i + d_i$.

Hardware and software changes reshape the way we use iterative refinement:

Accumulation of the inner products in extra precision was not widely available across machines anymore.

► Single precision (fp32) was not substantially faster than double precision (fp64).

➤ Iterative methods (CG, GMRES, etc.) were on the rise, and unstable direct methods were more and more considered to target parallel computing and sparse data structures.

(1) Computing the residual: $r_i = b - Ax_i$ (working)(2) Solving the correction equation: $Ad_i = r_i$ (working)(3) Updating the solution: $x_{i+1} = x_i + d_i$. (working)

Hardware and software changes reshape the way we use iterative refinement:

Accumulation of the inner products in extra precision was not widely available across machines anymore.

➤ Single precision (fp32) was not substantially faster than double precision (fp64).

Iterative methods (CG, GMRES, etc.) were on the rise, and unstable direct methods were more and more considered to target parallel computing and sparse data structures.

⇒ For these reasons, a new form emerged where every operations are in the same precision: fixed precision iterative refinement!

Why is it relevant?

(1) Computing the residual: $r_i = b - Ax_i$ (working)(2) Solving the correction equation: $Ad_i = r_i$ (working)(3) Updating the solution: $x_{i+1} = x_i + d_i$. (working)

Common thought was that fixed precision iterative refinement is useless!

"In this case, x_m is often no more accurate than x₁." **C. Moler**, 1967.

Why is it relevant?

(1) Computing the residual: $r_i = b - Ax_i$ (working)(2) Solving the correction equation: $Ad_i = r_i$ (working)(3) Updating the solution: $x_{i+1} = x_i + d_i$. (working)

Common thought was that fixed precision iterative refinement is useless!

"In this case, x_m is often no more accurate than x₁." C. Moler, 1967.

As the context has changed, this idea has been challenged by

"Iterative refinement implies numerical stability" by Michal Jankowski and Henryk Woźniakowski, 1977.

"Iterative refinement implies numerical stability for gaussian elimination" by Robert
D. Skeel, 1980.

They showed that while fixed precision iterative refinement cannot correct (much) stable solvers, it can **transform an unstable solver into a stable one**.

(1) Computing the residual: $r_i = b - Ax_i$ (working)(2) Solving the correction equation: $Ad_i = r_i$ (working)(3) Updating the solution: $x_{i+1} = x_i + d_i$. (working)

From the 40s to the 70s, stable direct solvers were the standard. BUT from the 70s to the 2000s, a wider variety of linear solvers emerged.

(1) Computing the residual: $r_i = b - Ax_i$ (working)(2) Solving the correction equation: $Ad_i = r_i$ (working)(3) Updating the solution: $x_{i+1} = x_i + d_i$. (working)

From the 40s to the 70s, stable direct solvers were the standard. BUT from the 70s to the 2000s, a wider variety of linear solvers emerged.

 \Rightarrow Any kind of linear solver can solve the correction equation $Ad_i = r_i!$

(1) Computing the residual: $r_i = b - Ax_i$ (working)(2) Solving the correction equation: $Ad_i = r_i$ (working)(3) Updating the solution: $x_{i+1} = x_i + d_i$. (working)

From the 40s to the 70s, stable direct solvers were the standard. BUT from the 70s to the 2000s, a wider variety of linear solvers emerged.

 \Rightarrow Any kind of linear solver can solve the correction equation $Ad_i = r_i$!

With Chebyshev iterations:

"Iterative refinement implies numerical stability" by Michal Jankowski and Henryk Woźniakowski, 1977.

(1) Computing the residual: $r_i = b - Ax_i$ (working)(2) Solving the correction equation: $Ad_i = r_i$ (working)(3) Updating the solution: $x_{i+1} = x_i + d_i$. (working)

From the 40s to the 70s, stable direct solvers were the standard. BUT from the 70s to the 2000s, a wider variety of linear solvers emerged.

 \Rightarrow Any kind of linear solver can solve the correction equation $Ad_i = r_i$!

With GMRES:

"Efficient High Accuracy Solutions with GMRES(m)" by Kathryn Turner and Homer F.
Walker, 1992.

(1) Computing the residual: $r_i = b - Ax_i$ (working)(2) Solving the correction equation: $Ad_i = r_i$ (working)(3) Updating the solution: $x_{i+1} = x_i + d_i$. (working)

From the 40s to the 70s, stable direct solvers were the standard. BUT from the 70s to the 2000s, a wider variety of linear solvers emerged.

 \Rightarrow Any kind of linear solver can solve the correction equation $Ad_i = r_i$!

With LU and drop strategies:

"Use of Iterative Refinement in the Solution of Sparse Linear Systems" by Zahari Zlatev, 1982.

(1) Computing the residual: $r_i = b - Ax_i$ (working)(2) Solving the correction equation: $Ad_i = r_i$ (working)(3) Updating the solution: $x_{i+1} = x_i + d_i$. (working)

From the 40s to the 70s, stable direct solvers were the standard. BUT from the 70s to the 2000s, a wider variety of linear solvers emerged.

 \Rightarrow Any kind of linear solver can solve the correction equation $Ad_i = r_i$!

With LU and static pivoting:

"Making Sparse Gaussian Elimination Scalable by Static Pivoting" by Xiaoye S. Li and James W. Demmel, 1998.
From the 2000s to the 2010s

The advent of low precision

(1) Computing the residual: $r_i = b - Ax_i$ (2) Solving the correction equation: $Ad_i = r_i$ (3) Updating the solution: $x_{i+1} = x_i + d_i$.

From the 2000s, single precision became effectively 2× **faster** in hardware than double precision. This major hardware change will **start the advent of low precision**!

"Although short vector, SIMD processors have been around for over a decade, the concept of using those extensions to utilize the advantages of single precision performance in scientific computing did not come to fruition until recently, due to the fact that most scientific computing problems require double precision accuracy." A. Buttari et al., 2007.

The advent of low precision

(1) Computing the residual: $r_i = b - Ax_i$ (2) Solving the correction equation: $Ad_i = r_i$ (3) Updating the solution: $x_{i+1} = x_i + d_i$.

From the 2000s, single precision became effectively 2× **faster** in hardware than double precision. This major hardware change will **start the advent of low precision**!

"Although short vector, SIMD processors have been around for over a decade, the concept of using those extensions to utilize the advantages of single precision performance in scientific computing did not come to fruition until recently, due to the fact that most scientific computing problems require double precision accuracy." A. Buttari et al., 2007.

 \Rightarrow Can we use iterative refinement to obtain double precision accuracy ? $_{\gamma}$

Get back the accuracy

(1) Computing the residual: $r_i = b - Ax_i$ (working)(2) Solving the correction equation: $Ad_i = r_i$ (low)(3) Updating the solution: $x_{i+1} = x_i + d_i$. (working)

Strategy to accelerate LU direct solver proposed in

E "Exploiting the performance of 32 bit floating point arithmetic in obtaining 64 bit accuracy (revisiting iterative refinement for linear systems)" by **J. Langou et al.**, 2006.

Compute the factorization $(O(n^3))$ in single precision, and apply the refinement steps $(O(n^2))$ in double precision to improve the accuracy of the solution.

As the **refinement** steps are asymptotically **negligible**, we can solve Ax = b twice faster while providing double precision accuracy.

 \Rightarrow Iterative refinement is used for performance!

The irruption of accelerators

(1) Computing the residual: $r_i = b - Ax_i$ (working)(2) Solving the correction equation: $Ad_i = r_i$ (low)(3) Updating the solution: $x_{i+1} = x_i + d_i$. (working)

In the 2000s, accelerators¹ were more and more considered in linear algebra computations.

¹Specialized hardware made to perform specific tasks more efficiently than if it was run on general-purpose CPUs.

The irruption of accelerators

(1) Computing the residual:
 (2) Solving the correction equation:
 (3) Updating the solution:

 $\begin{aligned} r_i &= b - A x_i \quad \text{(working)} \\ A d_i &= r_i \quad \text{(low)} \\ x_{i+1} &= x_i + d_i. \quad \text{(working)} \end{aligned}$

In the 2000s, accelerators¹ were more and more considered in linear algebra computations.

► Iterative refinement with FPGA (Field-Programmable Gate Array).

 "High-Performance Mixed- Precision Linear Solver for FPGAs" by Junqing Sun et al., 2008.

Spartan FPGA from Xilinx

¹Specialized hardware made to perform specific tasks more efficiently than if it was run on general-purpose CPUs.

The irruption of accelerators

(1) Computing the residual:
 (2) Solving the correction equation:
 (3) Updating the solution:

 $\begin{aligned} r_i &= b - Ax_i \quad \text{(working)} \\ Ad_i &= r_i \quad \text{(low)} \\ x_{i+1} &= x_i + d_i. \quad \text{(working)} \end{aligned}$

In the 2000s, accelerators¹ were more and more considered in linear algebra computations.

► Iterative refinement with GPU (Graphics Processing Unit).

"Accelerating double precision fem simulations with gpus" by Dominik Göddeke et al., 2005.

Nvidia Geforce RTX 3090

¹Specialized hardware made to perform specific tasks more efficiently than if it was run on general-purpose CPUs.

From the mid 2010s to now

The rise of half precision(s)

(1) Computing the residual: $r_i = b - Ax_i$ (2) Solving the correction equation: $Ad_i = r_i$ (3) Updating the solution: $x_{i+1} = x_i + d_i$.

From the 2010s, the increasing availability of half precision arithmetics fed the need for mixed precision algorithms:

The rise of half precision(s)

(1) Computing the residual: $r_i = b - Ax_i$ (2) Solving the correction equation: $Ad_i = r_i$ (3) Updating the solution: $x_{i+1} = x_i + d_i$.

From the 2010s, the increasing availability of **half precision arithmetics** fed the **need for mixed precision algorithms**:

➤ Accounting for extra precision (e.g., fp128), which has been made available again through software developments, we can generally access four different arithmetics: fp16, fp32, fp64, fp128 (say).

 \Rightarrow Optimizing the computer performance pass through exploiting and combining efficiently each of these arithmetics!

The rise of half precision(s)

(1) Computing the residual: $r_i = b - Ax_i$ (2) Solving the correction equation: $Ad_i = r_i$ (3) Updating the solution: $x_{i+1} = x_i + d_i$.

From the 2010s, the increasing availability of **half precision arithmetics** fed the **need for mixed precision algorithms**:

► Accounting for extra precision (e.g., fp128), which has been made available again through software developments, we can generally access four different arithmetics: fp16, fp32, fp64, fp128 (say).

⇒ Optimizing the computer performance pass through exploiting and combining efficiently each of these arithmetics!

➤ While still many applications can handle single precision accuracy, a full half precision solution is not enough!

 \Rightarrow Half precision cannot be used alone!

(1) Computing the residual:
 (2) Solving the correction equation:
 (3) Updating the solution:

 $r_i = b - Ax_i$ (extra) $Ad_i = r_i$ (working) $x_{i+1} = x_i + d_i$. (working)

Review of the past iterative refinement uses:

> Extra precision on the residual for a better accuracy.

(1) Computing the residual:(2) Solving the correction equation:(3) Updating the solution:

 $\begin{aligned} r_i &= b - Ax_i \quad \text{(working)} \\ Ad_i &= r_i \quad \text{(working)} \\ x_{i+1} &= x_i + d_i. \quad \text{(working)} \end{aligned}$

Review of the past iterative refinement uses:

> Extra precision on the residual for a better accuracy.

► Refinement process for stability.

(1) Computing the residual:(2) Solving the correction equation:(3) Updating the solution:

 $\begin{aligned} r_i &= b - Ax_i \quad \text{(working)} \\ Ad_i &= r_i \quad \text{(low)} \\ x_{i+1} &= x_i + d_i. \quad \text{(working)} \end{aligned}$

Review of the past iterative refinement uses:

- > Extra precision on the residual for a better accuracy.
- Refinement process for stability.
- ► Low precision on the solver for improved performance.

(1) Computing the residual:
 (2) Solving the correction equation:
 (3) Updating the solution:

 $r_i = b - Ax_i \quad (extra)$ $Ad_i = r_i \quad (low)$ $x_{i+1} = x_i + d_i. \quad (working)$

Review of the past iterative refinement uses:

- Extra precision on the residual for a better accuracy.
- Refinement process for stability.
- ► Low precision on the solver for improved performance.

All can be achieved at once!

"[...] by using three precisions instead of two in iterative refinement, it is possible to accelerate the solution process and to obtain more accurate results for a wider class of problems." Erin Carson and Nicholas J. Higham, 2018.

(1) Computing the residual:
 (2) Solving the correction equation:
 (3) Updating the solution:

 $\begin{aligned} r_i &= b - Ax_i \quad (\text{extra}) \\ Ad_i &= r_i \quad (\text{low}) \\ x_{i+1} &= x_i + d_i. \quad (\text{working}) \end{aligned}$

Review of the past iterative refinement uses:

- Extra precision on the residual for a better accuracy.
- Refinement process for stability.
- ► Low precision on the solver for improved performance.

All can be achieved at once!

E "A New Analysis of Iterative Refinement and Its Application to Accurate Solution of Ill-Conditioned Sparse Linear Systems" by Erin Carson and Nicholas J. Higham, 2017.

E "Accelerating the Solution of Linear Systems by Iterative Refinement in Three Precisions" by Erin Carson and Nicholas J. Higham, 2018.

Ongoing topic!

(1) Computing the residual: $r_i = b - Ax_i$ (extra)(2) Solving the correction equation: $Ad_i = r_i$ (low)(3) Updating the solution: $x_{i+1} = x_i + d_i$. (working)

It is still a hot topic!

E "Harnessing GPU Tensor Cores for Fast FP16 Arithmetic to Speed up Mixed-Precision Iterative Refinement Solvers" by **Azzam Haidar at al.**, 2018.

"Improving the Performance of the GMRES Method Using Mixed-Precision Techniques" by **Neil Lindquist at al.**, 2020.

GPUs" by **Kyaw L. Oo and Andreas Vogel**, 2020.

E "Exploiting lower precision arithmetic in solving symmetric positive definite linear systems and least squares problems." by Nicholas J. Higham and Srikara Pranesh, 2021.

"Mixed Precision GMRES-based Iterative Refinement with Recycling" by Eda Oktay and Erin Carson, 2022.

History summary

Mixed precision iterative refinement for the solution of large sparse linear systems" by Bastien Vieublé, 2022.

State-of-the-art mixed precision iterative refinement

Generalized iterative refinement

Algorithm Generalized iterative refinement	
1: Initialize x ₀	
2: while not converged do	
3: Compute $r_i = b - Ax_i$	(<i>u</i> _r)
4: Solve $Ad_i = r_i$	(U_s)
5: Compute $x_{i+1} = x_i + d_i$	(u)
6: end while	

> The precisions u_r , u_s , and u are arbitrary. Depending on the context, u_r , u_s , and u can be the arithmetic precisions at which the operations are done or their accuracies.

► The linear solver at step 4 is arbitrary.

Any **analysis on generalized iterative refinement holds for any specialization** of this algorithm. That is, for a given solver and a given set of precisions.

Generalized iterative refinement

Algorithm Generalized iterative refinement

- 1: Initialize x_0
- 2: while not converged do
- 3: Compute $r_i = b Ax_i$
- 4: Solve $Ad_i = r_i$
- 5: Compute $x_{i+1} = x_i + d_i$
- 6: end while

Conditions on the solver at step 4:

$$\begin{aligned} \widehat{d}_i &= (I + u_s E_i) d_i, \quad u_s \|E_i\|_{\infty} < 1, \\ \|\widehat{r}_i - A \widehat{d}_i\|_{\infty} &\leq u_s (c_1 \|A\|_{\infty} \|\widehat{d}_i\|_{\infty} + c_2 \|\widehat{r}_i\|_{\infty}), \end{aligned}$$

where E_i , c_1 , and c_2 are functions of n, A, $\hat{r_i}$, and u_s and have nonnegative entries. We recall, the quantities with an "hat" are computed quantities.

 (u_r)

 (u_s)

(u)

Theorem (Forward error convergence)

Let generalized iterative refinement be applied to Ax = b where $A \in \mathbb{R}^{n \times n}$ is nonsingular, and assume the solver used meets the previous conditions. As long as

$$\phi_i \equiv 2u_{\rm s}\min(\operatorname{cond}(A), \kappa_{\infty}(A)\mu_i) + u_{\rm s} \|E_i\|_{\infty} \ll 1,$$

the forward error is reduced on the ith iteration by a factor approximatively ϕ_i until an iterate \hat{x}_i is produced for which

$$\frac{\|x-\widehat{x}\|_{\infty}}{\|x\|_{\infty}} \lesssim 4nu_r \operatorname{cond}(A, x) + u.$$

Theorem (Forward error convergence)

Let generalized iterative refinement be applied to Ax = b where $A \in \mathbb{R}^{n \times n}$ is nonsingular, and assume the solver used meets the previous conditions. As long as

$$\phi_i \equiv 2u_s \min(\operatorname{cond}(A), \kappa_{\infty}(A)\mu_i) + u_s \|E_i\|_{\infty} \ll 1,$$

the forward error is reduced on the ith iteration by a factor approximatively ϕ_i until an iterate \hat{x}_i is produced for which

$$\frac{\|x-\widehat{x}\|_{\infty}}{\|x\|_{\infty}} \lesssim 4nu_r \operatorname{cond}(A, x) + u.$$

► $\phi_i \ll 1$ is the convergence condition. It only depends on the precision u_s of the solver. It is dominated by the term $u_s ||E_i||_{\infty}$, such that we simplify the condition by $\phi_i \approx u_s ||E_i||_{\infty} \ll 1$.

► $4nu_r \operatorname{cond}(A, x) + u$ is the limiting accuracy. It only depends on u and u_r . If u_r is chosen accurate enough, we can remove the dependence on $\operatorname{cond}(A, x)$.

The proof consists in expressing the quantities ϕ_i and ϵ_i for each iteration *i* such that

$$\|x-\widehat{x}_{i+1}\|_{\infty} \leq \phi_i \|x-\widehat{x}_i\|_{\infty} + \epsilon_i.$$

If $\phi_i < 1$, the error $||x - \hat{x}_i||_{\infty}$ will reduce as we iterate until it reaches ϵ_i . The limiting accuracy is obtained from ϵ_i .

The proof consists in expressing the quantities ϕ_i and ϵ_i for each iteration i such that

$$\|x-\widehat{x}_{i+1}\|_{\infty} \leq \phi_i \|x-\widehat{x}_i\|_{\infty} + \epsilon_i.$$

If $\phi_i < 1$, the error $||x - \hat{x}_i||_{\infty}$ will reduce as we iterate until it reaches ϵ_i . The limiting accuracy is obtained from ϵ_i .

To bound
$$||x - \widehat{x}_{i+1}||_{\infty}$$
 by $||x - \widehat{x}_i||_{\infty}$, we can observe that
 $\widehat{x}_{i+1} = \widehat{x}_i + \widehat{d}_i + \Delta x_i, \quad |\Delta x_i| \le u |\widehat{x}_{i+1}|,$

where \hat{d}_i is the computed solution of the correction equation at the *i*th iteration and Δx_i is the rounding errors made by the vectors addition for the update.

The proof consists in expressing the quantities ϕ_i and ϵ_i for each iteration i such that

$$\|x-\widehat{x}_{i+1}\|_{\infty} \leq \phi_i \|x-\widehat{x}_i\|_{\infty} + \epsilon_i.$$

If $\phi_i < 1$, the error $||x - \hat{x}_i||_{\infty}$ will reduce as we iterate until it reaches ϵ_i . The limiting accuracy is obtained from ϵ_i .

To bound
$$||x - \widehat{x}_{i+1}||_{\infty}$$
 by $||x - \widehat{x}_i||_{\infty}$, we can observe that
 $\widehat{x}_{i+1} = \widehat{x}_i + \widehat{d}_i + \Delta x_i, \quad |\Delta x_i| \le u |\widehat{x}_{i+1}|,$

where \hat{d}_i is the computed solution of the correction equation at the *i*th iteration and Δx_i is the rounding errors made by the vectors addition for the update.

Considering $\hat{r}_i = b - A\hat{x}_i + \Delta r_i$, we have $\hat{x}_{i+1} = \hat{x}_i + A^{-1}\hat{r}_i + \hat{d}_i - A^{-1}\hat{r}_i + \Delta x_i$ $= x + A^{-1}\Delta r_i + (\hat{d}_i - A^{-1}\hat{r}_i) + \Delta x_i.$

We can bound $|\widehat{x}_{i+1} - x|$ such that

$$|\widehat{x}_{i+1} - x| \le |A^{-1}| |\Delta r_i| + |\widehat{d}_i - A^{-1}\widehat{r}_i| + |\Delta x_i|,$$

where Δr_i is the error made during the computation of the residual in precision u_r , and $\hat{d}_i - A^{-1}\hat{r}_i$ the error made during the computation of the solution of the correction equation.

We can bound $|\widehat{x}_{i+1} - x|$ such that

$$|\widehat{x}_{i+1} - x| \le |A^{-1}| |\Delta r_i| + |\widehat{d}_i - A^{-1}\widehat{r}_i| + |\Delta x_i|,$$

where Δr_i is the error made during the computation of the residual in precision u_r , and $\hat{d}_i - A^{-1}\hat{r}_i$ the error made during the computation of the solution of the correction equation.

We do not provide the details on how to bound the errors here, nor on the precise value of the quantity μ_i introduced below. With proper bounds on $|\Delta x_i|$, $|\Delta r_i|$ and $|\hat{d}_i - A^{-1}\hat{r}_i|$, we have

 $\begin{aligned} \|x - \widehat{x}_{i+1}\|_{\infty} &\lesssim (2u_{s}\min(\operatorname{cond}(A), \kappa_{\infty}(A)\mu_{i}) + u_{s}\|E_{i}\|_{\infty})\|x - \widehat{x}_{i}\|_{\infty} \\ &+ 2nu_{r}\operatorname{cond}(A, x)(\|x\|_{\infty} + \|\widehat{x}_{i}\|_{\infty}) + u\|\widehat{x}_{i+1}\|_{\infty}. \end{aligned}$

We can identify ϕ_i and ϵ_i .

Algorithm LU-based iterative refinement in three precisions

1:	Compute the LU factorization $A = \hat{L}\hat{U}$	(<i>u_f</i>)
2:	Solve $Ax_0 = b$	(<i>u_f</i>)
3:	while not converged do	
4:	Compute $r_i = b - Ax_i$	(U_r)
5:	Solve $Ad_i = r_i$ by $d_i = \hat{U}^{-1}\hat{L}^{-1}r_i$	(<i>u_f</i>)
6:	Compute $x_{i+1} = x_i + d_i$	(u)
7:	end while	

Algorithm LU-based	iterative	refinement in	three	precisions
--------------------	-----------	---------------	-------	------------

1:	Compute the LU factorization $A = \hat{L}\hat{U}$	$\mathcal{O}(n^3)$	(<i>u_f</i>)
2:	Solve $Ax_0 = b$	$\mathcal{O}(n^2)$	(<i>u_f</i>)
3:	while not converged do		
4:	Compute $r_i = b - Ax_i$	$\mathcal{O}(n^2)$	(<i>u</i> _r)
5:	Solve $Ad_i = r_i$ by $d_i = \hat{U}^{-1}\hat{L}^{-1}r_i$	$\mathcal{O}(n^2)$	(<i>u_f</i>)
6:	Compute $x_{i+1} = x_i + d_i$	$\mathcal{O}(n)$	(<i>u</i>)
7:	end while		

The strategy is to accelerate with low precisions the factorization $O(n^3)$ and recover a good accuracy by using higher precisions for the residual and update $O(n^2)$.

Remark: LU is the historical/classical solver used with iterative refinement.

Algorithm LU-based iterative refinement in three precisions

1:	Compute the LU factorization $A = \hat{L}\hat{U}$	$\mathcal{O}(n^3)$	(<i>u_f</i>)
2:	Solve $Ax_0 = b$	$\mathcal{O}(n^2)$	(<i>u_f</i>)
3:	while not converged do		
4:	Compute $r_i = b - Ax_i$	$\mathcal{O}(n^2)$	(u _r)
5:	Solve $Ad_i = r_i$ by $d_i = \hat{U}^{-1}\hat{L}^{-1}r_i$	$\mathcal{O}(n^2)$	(<i>u_f</i>)
6:	Compute $x_{i+1} = x_i + d_i$	$\mathcal{O}(n)$	(u)
7:	end while		

From the previous theorem we know that the limiting accuracy is of order $u_r \operatorname{cond}(A) + u$.

AND the convergence condition is $u_s ||E_i||_{\infty} \ll 1 \Rightarrow$ We need to determine u_s and $||E_i||_{\infty}$ for the case of the LU solver!

Algorithm LU-based iterative refinement in three precisions

1:	Compute the <i>LU</i> factorization $A = \hat{L}\hat{U}$	$\mathcal{O}(n^3)$	(<i>U_f</i>)
2:	Solve $Ax_0 = b$	$\mathcal{O}(n^2)$	(<i>u_f</i>)
3:	while not converged do		
4:	Compute $r_i = b - Ax_i$	$\mathcal{O}(n^2)$	(<i>u</i> _r)
5:	Solve $Ad_i = r_i$ by $d_i = \hat{U}^{-1}\hat{L}^{-1}r_i$	$\mathcal{O}(n^2)$	(<i>u_f</i>)
6:	Compute $x_{i+1} = x_i + d_i$	$\mathcal{O}(n)$	(u)
7:	end while		

We know that the LU solver provide a solution satisfying

$$\frac{\|d_i - \hat{d}_i\|_{\infty}}{\|d_i\|_{\infty}} \ll u_f \kappa_{\infty}(A).$$

We identify $u_s ||E_i||_{\infty} \equiv u_f \kappa_{\infty}(A)$ knowing that by definition we have

$$\frac{\|d_i - \widehat{d}_i\|_{\infty}}{\|d_i\|_{\infty}} \le u_s \|E_i\|_{\infty}.$$

Algorithm LU-based iterative refinement in three precisions

1:	Compute the LU factorization $A = \hat{L}\hat{U}$	$\mathcal{O}(n^3)$	(<i>u_f</i>)
2:	Solve $Ax_0 = b$	$\mathcal{O}(n^2)$	(<i>u_f</i>)
3:	while not converged do		
4:	Compute $r_i = b - Ax_i$	$\mathcal{O}(n^2)$	(<i>u</i> _r)
5:	Solve $Ad_i = r_i$ by $d_i = \hat{U}^{-1}\hat{L}^{-1}r_i$	$\mathcal{O}(n^2)$	(<i>u_f</i>)
6:	Compute $x_{i+1} = x_i + d_i$	$\mathcal{O}(n)$	(u)
7:	end while		
	Convergence condition	Forward error	

	convergence contaition	ronward error
LU-IR3	$u_f\kappa(A)\ll 1$	$u_r\kappa(A) + u$

Limit: Very **low precision** factorization leads to a **very restrictive convergence condition** for LU-IR3 (e.g., with $u_f = \text{fp16}$ we have $\kappa(A) \ll 2 \times 10^3$).

LU-GMRES-IR5: Get more robust

Algorithm GMRES-based iterative refinement in five precisions

► Based on **GMRES** solver which is a well-known Krylov subspace based iterative solver.

> LU-GMRES-IR5 is a more robust form of iterative refinement capable of tackling higher condition numbers $\kappa(A)$ than LU-IR3.

Algorithm GMRES-based iterative refinement in five precisions

Compute the LU factorization A = LÛ (u_f)
 Solve Ax₀ = b (u_f)
 while not converged do
 Compute r_i = b - Ax_i (u_r)
 Solve Û⁻¹L⁻¹Ad_i = Û⁻¹L⁻¹r_i by GMRES at precision (u_g) with matrix vector products with à = Û⁻¹L⁻¹A at precision (u_p)
 Compute x_{i+1} = x_i + d_i (u)
 end while

	Convergence condition	Forward error
LU-IR3	$\kappa(A)u_f \ll 1$	$u_r\kappa(A) + u$
LU-GMRES-IR5	$(u_g + u_p \kappa(A))(1 + u_f^2 \kappa(A)^2) \ll 1^a$	$u_r\kappa(A) + u$

^{*a*}The proof for the convergence condition of LU-GMRES-IR5 still relies on identifying u_s and E_i , but is a bit more technical. We will not attempt to do it here.

Algorithm GMRES-based iterative refinement in five precisions

1: Compute the *LU* factorization $A = \hat{L}\hat{U}$ (u_f) 2: Solve $Ax_0 = b$ (u_f) 3: while not converged do 4: Compute $r_i = b - Ax_i$ (u_r) 5: Solve $\hat{U}^{-1}\hat{L}^{-1}Ad_i = \hat{U}^{-1}\hat{L}^{-1}r_i$ by GMRES at precision (u_g) with matrix vector products with $\tilde{A} = \hat{U}^{-1}\hat{L}^{-1}A$ at precision (u_p) 6: Compute $x_{i+1} = x_i + d_i$ (u)7: end while

	Convergence condition	Forward error
LU-IR3	$\kappa(A)u_f \ll 1$	$u_r\kappa(A) + u$
LU-GMRES-IR5	$(u_g + u_p \kappa(A))(1 + u_f^2 \kappa(A)^2) \ll 1$	$u_r\kappa(A) + u$

Example: If $u_f = \text{fp16}$, the condition on LU-IR3 is 2×10^3 , on LU-GMRES-IR5 with $u_g = \text{fp64}$ and $u_p = \text{fp128}$ it is 2×10^{11} !
LU-IR3 Vs LU-GMRES-IR5: Theoretical robustness

Ug	Up	Convergence Condition (max(κ(A)))
LU-IR3		2×10^{3}
R	S	8×10^{3}
В	S	3×10^4
Н	S	4×10^4
Н	D	9×10^4
S	D	8×10^{6}
D	D	3×10^{7}
D	Q	2×10^{11}

Combinations of LU-GMRES-IR5 for $u_f = H$ and u = D.

The more we increase the precisions ug and up, the more robust we are.
LU-GMRES-IR5 is flexible regarding the conditioning of the problems and the choice of precisions ⇒ It offers finer trade-offs between robustness and performance!

Performance results on sparse problems (quick appetizer)

Name	Ν	NNZ	Arith.	Sym.	$\kappa(A)$	Fact. (flops)	Slv. (flops)
ElectroPhys10M	1.02E+07	1.41E+08	R	1	1.10E+01	4E+14	9E+10
DrivAer6M	6.11E+06	4.97E+07	R	1	9.40E+05	6E+13	3E+10
Queen_4147	4.14E+06	3.28E+08	R	1	4.30E+06	3E+14	6E+10
tminlet3M	2.84E+06	1.62E+08	С	0	2.70E+07	1E+14	2E+10
perf009ar	5.41E+06	2.08E+08	R	1	3.70E+08	2E+13	2E+10
elasticity-3d	5.18E+06	1.16E+08	R	1	3.60E+09	2E+14	5E+10
lfm_aug5M	5.52E+06	3.71E+07	С	1	5.80E+11	2E+14	5E+10
CarBody25M	2.44E+07	7.06E+08	R	1	8.60E+12	1E+13	3E+10
thmgas	5.53E+06	3.71E+07	R	0	8.28E+13	1E+14	4E+10

Set of **industrial** and SuiteSparse matrices.

► Goal: We want to accelerate an LU direct solver in double precision with LU-IR3 and LU-GMRES-IR5 using single precision and various numerical approximations.

Name	Ν	NNZ	Arith.	Sym.	$\kappa(A)$	Fact. (flops)	Slv. (flops)
ElectroPhys10M	1.02E+07	1.41E+08	R	1	1.10E+01	4E+14	9E+10
DrivAer6M	6.11E+06	4.97E+07	R	1	9.40E+05	6E+13	3E+10
Queen_4147	4.14E+06	3.28E+08	R	1	4.30E+06	3E+14	6E+10
tminlet3M	2.84E+06	1.62E+08	С	0	2.70E+07	1E+14	2E+10
perf009ar	5.41E+06	2.08E+08	R	1	3.70E+08	2E+13	2E+10
elasticity-3d	5.18E+06	1.16E+08	R	1	3.60E+09	2E+14	5E+10
lfm_aug5M	5.52E+06	3.71E+07	С	1	5.80E+11	2E+14	5E+10
CarBody25M	2.44E+07	7.06E+08	R	1	8.60E+12	1E+13	3E+10
thmgas	5.53E+06	3.71E+07	R	0	8.28E+13	1E+14	4E+10

Set of **industrial** and SuiteSparse matrices.

The matrices are ordered in increasing $\kappa(A)$, the higher $\kappa(A)$ is, the slower the convergence (if reached at all).

Name	Ν	NNZ	Arith.	Sym.	$\kappa(A)$	Fact. (flops)	Slv. (flops)
ElectroPhys10M	1.02E+07	1.41E+08	R	1	1.10E+01	4E+14	9E+10
DrivAer6M	6.11E+06	4.97E+07	R	1	9.40E+05	6E+13	3E+10
Queen_4147	4.14E+06	3.28E+08	R	1	4.30E+06	3E+14	6E+10
tminlet3M	2.84E+06	1.62E+08	С	0	2.70E+07	1E+14	2E+10
perf009ar	5.41E+06	2.08E+08	R	1	3.70E+08	2E+13	2E+10
elasticity-3d	5.18E+06	1.16E+08	R	1	3.60E+09	2E+14	5E+10
lfm_aug5M	5.52E+06	3.71E+07	С	1	5.80E+11	2E+14	5E+10
CarBody25M	2.44E+07	7.06E+08	R	1	8.60E+12	1E+13	3E+10
thmgas	5.53E+06	3.71E+07	R	0	8.28E+13	1E+14	4E+10

Set of **industrial** and SuiteSparse matrices.

➤ We run on OLYMPE supercomputer nodes (two Intel 18-cores Skylake/node), 1 node (2MPI×18threads) or 2 nodes (4MPI×18threads) depending on the matrix size.

Best time and memory achieved w.r.t. double direct LU

 \Rightarrow Up to 5.6× faster and 4.4× less memory with the same accuracy on the solution than the double direct LU solver!

Conclusion

- ► Low precisions are a potential source of substantial resource savings BUT they degrade the accuracy of the solution.
- ► Iterative refinement is one of the first mixed precision algorithm. It was implemented on the first computers.
- ➤ Iterative refinement can be used to efficiently exploit low precisions while safely improving the accuracy of the solution.
- > The ability or not of iterative refinement to improve the solution depends on the condition number of the problem (i.e., $\kappa(A)$).

Question Time !