
Mixed precision iterative refinement

Bastien Vieublé
29/01/2024

AMSS, Chinese Academy of Sciences

Who am I ?

2015
to 2019

• Engineering school, ENSEEIHT
Computer science and applied math

Apr. 2019
to Sep. 2019

• Internship, Chinese Academy of Sciences (AMSS)
Machine learning

Oct. 2019
to Oct. 2022

• PhD student, IRIT
Numerical analysis and high performance computing

Nov. 2022
to Nov. 2023

• Post-doc, University of Manchester
Numerical analysis

Dec. 2023
to Now

• Post-doc, Chinese Academy of Sciences (AMSS)

1/44

Who am I ?

2015
to 2019

• Engineering school, ENSEEIHT
Computer science and applied math

Apr. 2019
to Sep. 2019

• Internship, Chinese Academy of Sciences (AMSS)
Machine learning

Oct. 2019
to Oct. 2022

• PhD student, IRIT
Numerical analysis and high performance computing

Nov. 2022
to Nov. 2023

• Post-doc, University of Manchester
Numerical analysis

Dec. 2023
to Now

• Post-doc, Chinese Academy of Sciences (AMSS)

1/44

Who am I ?

2015
to 2019

• Engineering school, ENSEEIHT
Computer science and applied math

Apr. 2019
to Sep. 2019

• Internship, Chinese Academy of Sciences (AMSS)
Machine learning

Oct. 2019
to Oct. 2022

• PhD student, IRIT
Numerical analysis and high performance computing

Nov. 2022
to Nov. 2023

• Post-doc, University of Manchester
Numerical analysis

Dec. 2023
to Now

• Post-doc, Chinese Academy of Sciences (AMSS)

1/44

Who am I ?

2015
to 2019

• Engineering school, ENSEEIHT
Computer science and applied math

Apr. 2019
to Sep. 2019

• Internship, Chinese Academy of Sciences (AMSS)
Machine learning

Oct. 2019
to Oct. 2022

• PhD student, IRIT
Numerical analysis and high performance computing

Nov. 2022
to Nov. 2023

• Post-doc, University of Manchester
Numerical analysis

Dec. 2023
to Now

• Post-doc, Chinese Academy of Sciences (AMSS)

1/44

Who am I ?

2015
to 2019

• Engineering school, ENSEEIHT
Computer science and applied math

Apr. 2019
to Sep. 2019

• Internship, Chinese Academy of Sciences (AMSS)
Machine learning

Oct. 2019
to Oct. 2022

• PhD student, IRIT
Numerical analysis and high performance computing

Nov. 2022
to Nov. 2023

• Post-doc, University of Manchester
Numerical analysis

Dec. 2023
to Now

• Post-doc, Chinese Academy of Sciences (AMSS)

1/44

On solving linear systems

Linear systems and physical applications

Ax = b,
A ∈ Rn×n, b ∈ Rn, x ∈ Rn

2/44

Linear systems and physical applications

Ax = b,
A ∈ Rn×n, b ∈ Rn, x ∈ Rn

Physicists are extremely good clients of large scale parallel linear solvers!

This is because they describe many of their problems in term of differential
equations. Generally, an analytic solution is only available for the simplest
cases. Therefore, solving their differential equations often involve the
discretization of the problem to transform it into a linear system.

They are generally not much aware of the numerical difficulties, the
parallelism, the computer hardware, or the different algorithms to solve
their linear systems.

⇒ This is our job!

2/44

Fat problems require fat computers!

→ →

Large-scale linear systems...
Up to billions of unknowns, applications demanding enormous amount of
memory and flops of computation.

For a dense problem of size n = 107, storing the matrix requires TBytes of
memory, factorizing the matrix requires Exaflops of computation!

...require large-scale computers.
Increasingly large numbers of cores available, high heterogeneity in the
computation (CPU, GPU, FPGA, TPU, etc), and high heterogeneity in data
motions (RAM to cache, disk to RAM, node to node, etc).

3/44

Two main kinds of solvers

What are the ways to solve a sparse Ax = b ∈ Rn on computers?

Iterative solvers
Compute a sequence of xk converging towards x.
Examples: Gauss-Seidel, SOR, Krylov subspace methods, etc.

ä Low computational cost and memory consumption if the convergence is
quick...

ä BUT convergence depends on the matrix properties.

Direct solvers
Based on a factorization of A.
Examples: LDLT, LU, QR, etc.

ä High computational cost and memory consumption...

ä BUT they are robust and easy to use.

⇒ For both, the reduction of the computational cost is the focus of much
research.

4/44

Two main kinds of solvers

What are the ways to solve a sparse Ax = b ∈ Rn on computers?

Iterative solvers
Compute a sequence of xk converging towards x.
Examples: Gauss-Seidel, SOR, Krylov subspace methods, etc.

ä Low computational cost and memory consumption if the convergence is
quick...

ä BUT convergence depends on the matrix properties.

Direct solvers
Based on a factorization of A.
Examples: LDLT, LU, QR, etc.

ä High computational cost and memory consumption...

ä BUT they are robust and easy to use.

⇒ For both, the reduction of the computational cost is the focus of much
research. 4/44

Reduce the cost by reducing the complexity

Approximate computing: deliberately approximate the computations in
order to improve the performance at the cost of introducing a perturbation.

ä The perturbed problem should be close to the original one and
should reduce time and/or memory!

ä In general the larger the perturbations the larger the savings...

ä BUT large perturbations = low accuracy!

In this course, we focus on one particular kind of approximate computing
techniques: the employment low precision arithmetics.

5/44

Low precision arithmetics

Introduction to floating point numbers

Floating point format
Main format for representing real numbers in computers. A number is of the form:

x = ±m× βe

Base β (usually 2).

± is the bit of sign.

The mantissa m is an integer represented in base β.

The exponent e is an integer represented in base β.

ä The mantissa carries the significant digits (i.e., how accurate can be the
numbers).

ä The exponent carries the range (i.e., how far is the lowest and highest
representable number).

Examples: 1.4723 = + 14723︸ ︷︷ ︸
mantissa

×

exponent︷︸︸︷
−4

10︸︷︷︸
β

, −92 = − 010111︸ ︷︷ ︸
23

×

2︷︸︸︷
0010
2︸︷︷︸
β

6/44

Introduction to floating point numbers

Floating point format
Main format for representing real numbers in computers. A number is of the form:

x = ±m× βe

Base β (usually 2).

± is the bit of sign.

The mantissa m is an integer represented in base β.

The exponent e is an integer represented in base β.

The unit roundoff u determines the relative accuracy any number in the
representable range [emin, emax] can be approximated with:

∀x ∈ [emin, emax] ⊂ R, f l(x) = x(1+ δ), |δ| ≤ u,

where f l(x) is the floating point representation of a real number x, and δ the
relative difference between this representation and x.

6/44

More notation

The condition number of a matrix is a measure of its ”numerical difficulty”.
We will use the two quantities

κ(A) = ∥A∥∥A−1∥, cond(A) = ∥|A||A−1|∥.

Suppose we are solving a linear system Ax = b with a computer, due to the
finite representation of numbers and accumulation of errors we cannot
provide the true x, we then call the computed solution x̂.

We define the (relative) forward error of our computed solution as

fwd =
∥x̂− x∥
∥x∥ .

7/44

Commonly available floating point arithmetics

ID Signif. bits Exp. bits Range Unit roundoff u

fp128 Q 113 15 10±4932 1× 10−34

double-fp64 DD 107 11 10±308 6× 10−33

fp64 D 53 11 10±308 1× 10−16

fp32 S 24 8 10±38 6× 10−8

tfloat32 T 11 8 10±38 5× 10−4

fp16 H 11 5 10±5 5× 10−4

bfloat16 B 8 8 10±38 4× 10−3

fp8 (E4M3) R 4 4 10±2 6.3× 10−2

fp8 (E5M2) R* 3 5 10±5 1.3× 10−1

8/44

Low precision arithmetics

sign
exponent
(8 bits)

signif.
(23 bits)

fp32
Range 10±38, u = 6× 10−8

sign
exponent
(5 bits)

signif.
(10 bits)

fp16
Range 10±5, u = 5× 10−4

sign
exponent
(8 bits)

signif.
(7 bits)

bfloat16
Range 10±38, u = 4× 10−3

sign
exponent
(8 bits)

signif.
(10 bits)

tfloat32
Range 10±38, u = 5× 10−4

sign
exponent
(4 bits)

signif.
(3 bits)

fp8 (E4M3)
Range 10±2, u = 6× 10−2

sign
exponent
(5 bits)

signif.
(2 bits)

fp8 (E5M2)
Range 10±5, u = 1× 10−1

9/44

Why using low precision arithmetics ?

Low precision arithmetics are less accurate and present a narrower range.
BUT they have 3 main advantages:

ä Storage, data movement and communications are all proportional
to the total number of bits. ⇒ Time and memory savings!
ä Speed of computation is also at least proportional to the total
number of bits. ⇒ Time savings!
ä Power consumption is dependent on the number of bits.
⇒ Energy savings!

As reducing time, memory, and energy consumption are all challenging
objectives for the ease of high performance computing, low arithmetic
precisions has become the Wild West of HPC!

10/44

The fundamental dilemma of low precision arithmetics

Problem

ä Low precision arithmetics can greatly improve performance of linear
solvers...

ä BUT they degrade their accuracy at the same time.

ä Unfortunately application experts generally require high accuracy on
the solution (i.e., most commonly double precision accuracy).

Idea: What if we could use low precisions to accelerate the most expensive
parts of the computation, and use higher precision only on some strategic
operations to recover the lost accuracy at low cost?

⇒ This is the goal of mixed precision algorithms!

11/44

The fundamental dilemma of low precision arithmetics

Problem

ä Low precision arithmetics can greatly improve performance of linear
solvers...

ä BUT they degrade their accuracy at the same time.

ä Unfortunately application experts generally require high accuracy on
the solution (i.e., most commonly double precision accuracy).

Idea: What if we could use low precisions to accelerate the most expensive
parts of the computation, and use higher precision only on some strategic
operations to recover the lost accuracy at low cost?

⇒ This is the goal of mixed precision algorithms!

11/44

Introduction to iterative
refinement

Newton’s method for correcting the solution of linear systems

Newton’s method consists in building approximations xi ∈ Rn converging
toward a zero x of a differentiable function f : Rn → Rn:

xi+1 = xi − (∇f(xi))−1f(xi).

We can correct the solution of linear systems by applying Newton’s method
to the residual f(x) = Ax− b. The procedure becomes

xi+1 = xi + A−1(b− Axi),

and can be decomposed into three steps

(1) Computing the residual: ri = b− Axi
(2) Solving the correction equation: Adi = ri
(3) Updating the solution: xi+1 = xi + di.

Newton’s method for the correction of linear systems is called iterative
refinement.

12/44

Newton’s method for correcting the solution of linear systems

Newton’s method consists in building approximations xi ∈ Rn converging
toward a zero x of a differentiable function f : Rn → Rn:

xi+1 = xi − (∇f(xi))−1f(xi).

We can correct the solution of linear systems by applying Newton’s method
to the residual f(x) = Ax− b. The procedure becomes

xi+1 = xi + A−1(b− Axi),

and can be decomposed into three steps

(1) Computing the residual: ri = b− Axi
(2) Solving the correction equation: Adi = ri
(3) Updating the solution: xi+1 = xi + di.

Newton’s method for the correction of linear systems is called iterative
refinement.

12/44

Newton’s method for correcting the solution of linear systems

Newton’s method consists in building approximations xi ∈ Rn converging
toward a zero x of a differentiable function f : Rn → Rn:

xi+1 = xi − (∇f(xi))−1f(xi).

We can correct the solution of linear systems by applying Newton’s method
to the residual f(x) = Ax− b. The procedure becomes

xi+1 = xi + A−1(b− Axi),

and can be decomposed into three steps

(1) Computing the residual: ri = b− Axi
(2) Solving the correction equation: Adi = ri
(3) Updating the solution: xi+1 = xi + di.

Newton’s method for the correction of linear systems is called iterative
refinement. 12/44

On the effect of rounding errors

(1) Computing the residual: ri = b− Axi

(working)

(2) Solving the correction equation: Adi = ri

(working)

(3) Updating the solution: xi+1 = xi + di.

(working)

In exact arithmetic and without errors, the iterative refinement procedure
gives the solution x = A−1b in one iteration!

13/44

On the effect of rounding errors

(1) Computing the residual: ri = b− Axi

(working)

(2) Solving the correction equation: Adi = ri

(working)

(3) Updating the solution: xi+1 = xi + di.

(working)

In exact arithmetic and without errors, the iterative refinement procedure
gives the solution x = A−1b in one iteration!

However, on computers, every step is computed in inexact arithmetic, which
lead to the presence of computing errors in every of these steps.

⇒ What is the impact of these errors in the procedure ?

13/44

On the effect of rounding errors

(1) Computing the residual: ri = b− Axi

(working)

(2) Solving the correction equation: Adi = ri

(working)

(3) Updating the solution: xi+1 = xi + di.

(working)

x0x

f(x) =
Ax−

b

13/44

On the effect of rounding errors

(1) Computing the residual: ri = b− Axi

(working)

(2) Solving the correction equation: Adi = ri

(working)

(3) Updating the solution: xi+1 = xi + di.

(working)

x0x

f(x0)

f(x) =
Ax−

b

13/44

On the effect of rounding errors

(1) Computing the residual: ri = b− Axi

(working)

(2) Solving the correction equation: Adi = ri

(working)

(3) Updating the solution: xi+1 = xi + di.

(working)

x0x

f̂(x0)
f(x) =

Ax−
b

13/44

On the effect of rounding errors

(1) Computing the residual: ri = b− Axi

(working)

(2) Solving the correction equation: Adi = ri

(working)

(3) Updating the solution: xi+1 = xi + di.

(working)

x0x

∇f(x0)
f(x) =

Ax−
b

13/44

On the effect of rounding errors

(1) Computing the residual: ri = b− Axi

(working)

(2) Solving the correction equation: Adi = ri

(working)

(3) Updating the solution: xi+1 = xi + di.

(working)

x0x

∇̂f(x0
)f(x) =

Ax−
b

13/44

On the effect of rounding errors

(1) Computing the residual: ri = b− Axi

(working)

(2) Solving the correction equation: Adi = ri

(working)

(3) Updating the solution: xi+1 = xi + di.

(working)

x0x

f(x) =
Ax−

b

x1
13/44

On the effect of rounding errors

(1) Computing the residual: ri = b− Axi

(working)

(2) Solving the correction equation: Adi = ri

(working)

(3) Updating the solution: xi+1 = xi + di.

(working)

x0x

f(x) =
Ax−

b

x̂1
13/44

On the effect of rounding errors

(1) Computing the residual: ri = b− Axi

(working)

(2) Solving the correction equation: Adi = ri

(working)

(3) Updating the solution: xi+1 = xi + di.

(working)

x0x1x

f̂(x1)

13/44

On the effect of rounding errors

(1) Computing the residual: ri = b− Axi

(working)

(2) Solving the correction equation: Adi = ri

(working)

(3) Updating the solution: xi+1 = xi + di.

(working)

x0x1x

∇̂f(x1)

13/44

On the effect of rounding errors

(1) Computing the residual: ri = b− Axi

(working)

(2) Solving the correction equation: Adi = ri

(working)

(3) Updating the solution: xi+1 = xi + di.

(working)

x0x1xx̂2
13/44

Historical perspectives

(1) Computing the residual: ri = b− Axi

(extra)

(2) Solving the correction equation: Adi = ri

(working)

(3) Updating the solution: xi+1 = xi + di.

(working)

Iterative refinement has been used for more than 70 years. It has constantly
been evolving over time, repeatedly reconsidered according to trends,
researcher’s interests, and hardware specifications, as well as the computing
challenges of each computing era.

⇒ History can give us a better understanding of why and how we use
this algorithm today!

14/44

Historical perspectives

(1) Computing the residual: ri = b− Axi

(extra)

(2) Solving the correction equation: Adi = ri

(working)

(3) Updating the solution: xi+1 = xi + di.

(working)

Iterative refinement has been used for more than 70 years. It has constantly
been evolving over time, repeatedly reconsidered according to trends,
researcher’s interests, and hardware specifications, as well as the computing
challenges of each computing era.

⇒ History can give us a better understanding of why and how we use
this algorithm today!

14/44

From the 40s to the 70s

Origin

(1) Computing the residual: ri = b− Axi

(extra)

(2) Solving the correction equation: Adi = ri

(working)

(3) Updating the solution: xi+1 = xi + di.

(working)

Iterative refinement was implemented
on the first computers!

The fatherhood is generally attributed
to James H. Wilkinson who first
described, implemented, and reported
the algorithm into a document.

📔 “Progress report on the Automatic
Computing Engine” by James H. Wilkinson,
1948.

Pilot ACE - One of the first computers,
designed by Alan Turing.

15/44

Origin

(1) Computing the residual: ri = b− Axi

(extra)

(2) Solving the correction equation: Adi = ri

(working)

(3) Updating the solution: xi+1 = xi + di.

(working)

Iterative refinement was implemented
on the first computers!

The fatherhood is generally attributed
to James H. Wilkinson who first
described, implemented, and reported
the algorithm into a document.

📔 “Progress report on the Automatic
Computing Engine” by James H. Wilkinson,
1948. James H. Wilkinson

15/44

Two main pieces of context

(1) Computing the residual: ri = b− Axi

(extra)

(2) Solving the correction equation: Adi = ri

(working)

(3) Updating the solution: xi+1 = xi + di.

(working)

1st element of context - Special hardware design of that time allowed
costless accumulation of inner products in extra precision.

⇒ The residual could be computed in extra precision, the correction
equation and the update are computed in working precision. It removes the

effect of the conditionning of the problem (i.e., κ(A)) on the error.

Mixed precision is not a new idea!

16/44

Two main pieces of context

(1) Computing the residual: ri = b− Axi (extra)
(2) Solving the correction equation: Adi = ri (working)
(3) Updating the solution: xi+1 = xi + di. (working)

1st element of context - Special hardware design of that time allowed
costless accumulation of inner products in extra precision.

⇒ The residual could be computed in extra precision, the correction
equation and the update are computed in working precision. It removes the

effect of the conditionning of the problem (i.e., κ(A)) on the error.

Mixed precision is not a new idea!

16/44

Two main pieces of context

(1) Computing the residual: ri = b− Axi (extra)
(2) Solving the correction equation: Adi = ri (working)
(3) Updating the solution: xi+1 = xi + di. (working)

1st element of context - Special hardware design of that time allowed
costless accumulation of inner products in extra precision.

⇒ The residual could be computed in extra precision, the correction
equation and the update are computed in working precision. It removes the

effect of the conditionning of the problem (i.e., κ(A)) on the error.

Mixed precision is not a new idea!

16/44

Two main pieces of context

(1) Computing the residual: ri = b− Axi (extra)
(2) Solving the correction equation: Adi = ri (working)
(3) Updating the solution: xi+1 = xi + di. (working)

2nd element of context - Iterative refinement was focused on improving
stable direct solvers (e.g., LU with partial pivoting)

because

ä Iterative solvers were not so trendy (less robust and reliable, and
not particularly better in performance on low dimensional dense
problems of this time).
ä It is computationaly interesting: the factorization A = LU (O(n3))
can be computed once, and the solve (O(n2)) can be applied multiple
times ⇒ Refinement iterations are cheap!

16/44

Two main pieces of context

(1) Computing the residual: ri = b− Axi (extra)
(2) Solving the correction equation: di = U\L\ri (working)
(3) Updating the solution: xi+1 = xi + di. (working)

2nd element of context - Iterative refinement was focused on improving
stable direct solvers (e.g., LU with partial pivoting)

because

ä Iterative solvers were not so trendy (less robust and reliable, and
not particularly better in performance on low dimensional dense
problems of this time).
ä It is computationaly interesting: the factorization A = LU (O(n3))
can be computed once, and the solve U\L\ri (O(n2)) can be applied
multiple times ⇒ Refinement iterations are cheap!

16/44

Two main pieces of context

(1) Computing the residual: ri = b− Axi (extra)
(2) Solving the correction equation: di = U\L\ri (working)
(3) Updating the solution: xi+1 = xi + di. (working)

2nd element of context - Iterative refinement was focused on improving
stable direct solvers (e.g., LU with partial pivoting) because

ä Iterative solvers were not so trendy (less robust and reliable, and
not particularly better in performance on low dimensional dense
problems of this time).

ä It is computationaly interesting: the factorization A = LU (O(n3))
can be computed once, and the solve U\L\ri (O(n2)) can be applied
multiple times ⇒ Refinement iterations are cheap!

16/44

Two main pieces of context

(1) Computing the residual: ri = b− Axi (extra)
(2) Solving the correction equation: di = U\L\ri (working)
(3) Updating the solution: xi+1 = xi + di. (working)

2nd element of context - Iterative refinement was focused on improving
stable direct solvers (e.g., LU with partial pivoting) because

ä Iterative solvers were not so trendy (less robust and reliable, and
not particularly better in performance on low dimensional dense
problems of this time).
ä It is computationaly interesting: the factorization A = LU (O(n3))
can be computed once, and the solve U\L\ri (O(n2)) can be applied
multiple times ⇒ Refinement iterations are cheap!

16/44

Two main pieces of context

(1) Computing the residual: ri = b− Axi (extra)
(2) Solving the correction equation: di = U\L\ri (working)
(3) Updating the solution: xi+1 = xi + di. (working)

All the studies of this period match this form of iterative refinement.

📔 “Notes on the solution of algebraic linear simultaneous equations” by Leslie Fox et
al., 1948.

📔 “On the improvement of the solutions to a set of simultaneous linear equations
using the ILLIAC” by James N. Snyder, 1955.

📔 “Note on the iterative refinement of least squares solution” by Gene H. Golub and
James H. Wilkinson, 1966.

📔 “Solution of real and complex systems of linear equations” by Hilary J. Bowdler et
al., 1966.

📔 “Iterative refinement of linear least squares solutions I” by Åke Björck, 1967.
16/44

Rounding error analyses

(1) Computing the residual: ri = b− Axi (extra)
(2) Solving the correction equation: di = U\L\ri (working)
(3) Updating the solution: xi+1 = xi + di. (working)

We have strong rounding error analysis results on iterative refinement from
this period.

“Since [...] the numbers [...] are all to a certain ex-
tent approximate only, the results of all calcula-
tions performed by the aid of these numbers can
only be approximately true ...” C. F. Gauss, 1809.

comment-alt

17/44

Rounding error analyses

(1) Computing the residual: ri = b− Axi (extra)
(2) Solving the correction equation: di = U\L\ri (working)
(3) Updating the solution: xi+1 = xi + di. (working)

We have strong rounding error analysis results on iterative refinement from
this period.

“Since [...] the numbers [...] are all to a certain ex-
tent approximate only, the results of all calcula-
tions performed by the aid of these numbers can
only be approximately true ...” C. F. Gauss, 1809.

comment-alt

⇒ The role of rounding error analyses is to discover to what extent these
calculations are approximately true!

17/44

Rounding error analyses

(1) Computing the residual: ri = b− Axi (extra)
(2) Solving the correction equation: di = U\L\ri (working)
(3) Updating the solution: xi+1 = xi + di. (working)

Rounding error analysis on iterative refinement aim at both:

ä Highlight under which conditions the solution can be improved by
refinement. This is referred to as convergence conditions.
ä Demonstrate to what accuracy the solution will be refined. This is
referred to as limiting accuracies.

17/44

Rounding error analyses

(1) Computing the residual: ri = b− Axi (extra)
(2) Solving the correction equation: di = U\L\ri (working)
(3) Updating the solution: xi+1 = xi + di. (working)

Rounding error analysis on iterative refinement aim at both:

ä Highlight under which conditions the solution can be improved by
refinement. This is referred to as convergence conditions.
ä Demonstrate to what accuracy the solution will be refined. This is
referred to as limiting accuracies.

The first two error analyses of iterative refinement were conducted by
Wilkinson and Moler for, resp., fixed point and floating point arithmetics.

📔 “Rounding Errors in Algebraic Processes” by James H. Wilkinson, 1963.

📔 “Iterative refinement in floating point” by Cleve B. Moler, 1967.
17/44

From the 70s to the 2000s

Hardware and software changes

(1) Computing the residual: ri = b− Axi

(extra)

(2) Solving the correction equation: Adi = ri

(working)

(3) Updating the solution: xi+1 = xi + di.

(working)

Hardware and software changes reshaped the way we use iterative
refinement:

ä Accumulation of the inner products in extra precision was not
widely available across machines anymore.

18/44

Hardware and software changes

(1) Computing the residual: ri = b− Axi

(extra)

(2) Solving the correction equation: Adi = ri

(working)

(3) Updating the solution: xi+1 = xi + di.

(working)

Hardware and software changes reshaped the way we use iterative
refinement:

ä Accumulation of the inner products in extra precision was not
widely available across machines anymore.

18/44

Hardware and software changes

(1) Computing the residual: ri = b− Axi

(extra)

(2) Solving the correction equation: Adi = ri

(working)

(3) Updating the solution: xi+1 = xi + di.

(working)

Hardware and software changes reshaped the way we use iterative
refinement:

ä Accumulation of the inner products in extra precision was not
widely available across machines anymore.
ä Single precision (fp32) was not substantially faster than double
precision (fp64).

18/44

Hardware and software changes

(1) Computing the residual: ri = b− Axi

(extra)

(2) Solving the correction equation: Adi = ri

(working)

(3) Updating the solution: xi+1 = xi + di.

(working)

Hardware and software changes reshaped the way we use iterative
refinement:

ä Accumulation of the inner products in extra precision was not
widely available across machines anymore.
ä Single precision (fp32) was not substantially faster than double
precision (fp64).
ä Iterative methods (CG, GMRES, etc.) were on the rise, and unstable
direct methods were more and more considered to target parallel
computing and sparse data structures.

18/44

Hardware and software changes

(1) Computing the residual: ri = b− Axi (working)
(2) Solving the correction equation: Adi = ri (working)
(3) Updating the solution: xi+1 = xi + di. (working)

Hardware and software changes reshaped the way we use iterative
refinement:

ä Accumulation of the inner products in extra precision was not
widely available across machines anymore.
ä Single precision (fp32) was not substantially faster than double
precision (fp64).
ä Iterative methods (CG, GMRES, etc.) were on the rise, and unstable
direct methods were more and more considered to target parallel
computing and sparse data structures.

⇒ For these reasons, a new form emerged where every operations are in
the same precision: fixed precision iterative refinement! 18/44

Why is it relevant?

(1) Computing the residual: ri = b− Axi (working)
(2) Solving the correction equation: Adi = ri (working)
(3) Updating the solution: xi+1 = xi + di. (working)

Common thought was that fixed precision iterative refinement is useless!

“In this case, xm is often no more accurate than x1.” C. Moler, 1967.
comment-alt

19/44

Why is it relevant?

(1) Computing the residual: ri = b− Axi (working)
(2) Solving the correction equation: Adi = ri (working)
(3) Updating the solution: xi+1 = xi + di. (working)

Common thought was that fixed precision iterative refinement is useless!

“In this case, xm is often no more accurate than x1.” C. Moler, 1967.
comment-alt

As the context has changed, this idea has been challenged by

📔 “Iterative refinement implies numerical stability” by Michal Jankowski and Henryk
Woźniakowski, 1977.

📔 “Iterative refinement implies numerical stability for gaussian elimination” by Robert
D. Skeel, 1980.

They showed that while fixed precision iterative refinement cannot correct
(much) stable solvers, it can transform an unstable solver into a stable one.

19/44

Widen the range of solvers

(1) Computing the residual: ri = b− Axi (working)
(2) Solving the correction equation: Adi = ri (working)
(3) Updating the solution: xi+1 = xi + di. (working)

From the 40s to the 70s, stable direct solvers were the standard. BUT from
the 70s to the 2000s, a wider variety of linear solvers emerged.

20/44

Widen the range of solvers

(1) Computing the residual: ri = b− Axi (working)
(2) Solving the correction equation: Adi = ri (working)
(3) Updating the solution: xi+1 = xi + di. (working)

From the 40s to the 70s, stable direct solvers were the standard. BUT from
the 70s to the 2000s, a wider variety of linear solvers emerged.

⇒ Any kind of linear solver can solve the correction equation Adi = ri !

20/44

Widen the range of solvers

(1) Computing the residual: ri = b− Axi (working)
(2) Solving the correction equation: Adi = ri (working)
(3) Updating the solution: xi+1 = xi + di. (working)

From the 40s to the 70s, stable direct solvers were the standard. BUT from
the 70s to the 2000s, a wider variety of linear solvers emerged.

⇒ Any kind of linear solver can solve the correction equation Adi = ri !

With Chebyshev iterations:

📔 “Iterative refinement implies numerical stability” by Michal Jankowski and Henryk
Woźniakowski, 1977.

20/44

Widen the range of solvers

(1) Computing the residual: ri = b− Axi (working)
(2) Solving the correction equation: Adi = ri (working)
(3) Updating the solution: xi+1 = xi + di. (working)

From the 40s to the 70s, stable direct solvers were the standard. BUT from
the 70s to the 2000s, a wider variety of linear solvers emerged.

⇒ Any kind of linear solver can solve the correction equation Adi = ri !

With GMRES:

📔 “Efficient High Accuracy Solutions with GMRES(m)” by Kathryn Turner and Homer F.
Walker, 1992.

20/44

Widen the range of solvers

(1) Computing the residual: ri = b− Axi (working)
(2) Solving the correction equation: Adi = ri (working)
(3) Updating the solution: xi+1 = xi + di. (working)

From the 40s to the 70s, stable direct solvers were the standard. BUT from
the 70s to the 2000s, a wider variety of linear solvers emerged.

⇒ Any kind of linear solver can solve the correction equation Adi = ri !

With LU and drop strategies:

📔 “Use of Iterative Refinement in the Solution of Sparse Linear Systems” by Zahari
Zlatev, 1982.

20/44

Widen the range of solvers

(1) Computing the residual: ri = b− Axi (working)
(2) Solving the correction equation: Adi = ri (working)
(3) Updating the solution: xi+1 = xi + di. (working)

From the 40s to the 70s, stable direct solvers were the standard. BUT from
the 70s to the 2000s, a wider variety of linear solvers emerged.

⇒ Any kind of linear solver can solve the correction equation Adi = ri !

With LU and static pivoting:

📔 “Making Sparse Gaussian Elimination Scalable by Static Pivoting” by Xiaoye S. Li
and James W. Demmel, 1998.

20/44

From the 2000s to the 2010s

The advent of low precision

(1) Computing the residual: ri = b− Axi

(extra)

(2) Solving the correction equation: Adi = ri

(working)

(3) Updating the solution: xi+1 = xi + di.

(working)

From the 2000s, single precision became effectively 2× faster in hardware
than double precision. This major hardware change will start the advent of
low precision!

PROBLEM:

“[...] the advantages of single precision performance in scientific
computing did not come to fruition until recently, due to the fact
that most scientific computing problems require double precision
accuracy.” A. Buttari et al., 2007.

comment-alt

21/44

The advent of low precision

(1) Computing the residual: ri = b− Axi

(extra)

(2) Solving the correction equation: Adi = ri

(working)

(3) Updating the solution: xi+1 = xi + di.

(working)

From the 2000s, single precision became effectively 2× faster in hardware
than double precision. This major hardware change will start the advent of
low precision!

PROBLEM:

“[...] the advantages of single precision performance in scientific
computing did not come to fruition until recently, due to the fact
that most scientific computing problems require double precision
accuracy.” A. Buttari et al., 2007.

comment-alt

SOLUTION: Iterative refinement to leverage the power of single precision
while delivering double precision accuracy! 21/44

Get back the accuracy

(1) Computing the residual: ri = b− Axi (working)
(2) Solving the correction equation: di = U\L\ri (low)
(3) Updating the solution: xi+1 = xi + di. (working)

Strategy to accelerate LU direct solver with single precision proposed in

📔 “Exploiting the performance of 32 bit floating point arithmetic in obtaining 64 bit
accuracy (revisiting iterative refinement for linear systems)” by J. Langou et al., 2006.

Compute the factorization (O(n3)) in single precision, and compute the
residual and update (O(n2)) in double precision to improve the accuracy of
the solution.

As the refinement steps are asymptotically negligible, we can solve Ax = b
twice faster while providing double precision accuracy.

⇒ Iterative refinement is used for performance!
22/44

The irruption of accelerators

(1) Computing the residual: ri = b− Axi (working)
(2) Solving the correction equation: Adi = ri (low)
(3) Updating the solution: xi+1 = xi + di. (working)

In the 2000s, accelerators1 were more and more considered in linear algebra
computations.

1Specialized hardware made to perform specific tasks more efficiently than if it was
run on general-purpose CPUs. 23/44

The irruption of accelerators

(1) Computing the residual: ri = b− Axi (working)
(2) Solving the correction equation: Adi = ri (low)
(3) Updating the solution: xi+1 = xi + di. (working)

In the 2000s, accelerators1 were more and more considered in linear algebra
computations.

ä Iterative refinement with FPGA
(Field-Programmable Gate Array).

📔 “High-Performance Mixed- Precision
Linear Solver for FPGAs” by Junqing
Sun et al., 2008.

Spartan FPGA from Xilinx
1Specialized hardware made to perform specific tasks more efficiently than if it was
run on general-purpose CPUs. 23/44

The irruption of accelerators

(1) Computing the residual: ri = b− Axi (working)
(2) Solving the correction equation: Adi = ri (low)
(3) Updating the solution: xi+1 = xi + di. (working)

In the 2000s, accelerators1 were more and more considered in linear algebra
computations.

ä Iterative refinement with GPU
(Graphics Processing Unit).

📔 “Accelerating double precision fem
simulations with gpus” by Dominik
Göddeke et al., 2005.

Nvidia Geforce RTX 3090

1Specialized hardware made to perform specific tasks more efficiently than if it was
run on general-purpose CPUs. 23/44

From the mid 2010s to now

The rise of half precision(s)

(1) Computing the residual: ri = b− Axi

(extra)

(2) Solving the correction equation: Adi = ri

(working)

(3) Updating the solution: xi+1 = xi + di.

(working)

From the 2010s, the increasing availability of half precision arithmetics
motivated by deep learning fed the need for mixed precision algorithms:

24/44

The rise of half precision(s)

(1) Computing the residual: ri = b− Axi

(extra)

(2) Solving the correction equation: Adi = ri

(working)

(3) Updating the solution: xi+1 = xi + di.

(working)

From the 2010s, the increasing availability of half precision arithmetics
motivated by deep learning fed the need for mixed precision algorithms:

ä Accounting for extra precision (e.g., fp128), which has been made
available again through software developments, we can generally
access four different arithmetics: fp16, fp32, fp64, fp128 (say).
⇒ Optimizing the computer performance pass through exploiting
and combining efficiently each of these arithmetics!

24/44

The rise of half precision(s)

(1) Computing the residual: ri = b− Axi

(extra)

(2) Solving the correction equation: Adi = ri

(working)

(3) Updating the solution: xi+1 = xi + di.

(working)

From the 2010s, the increasing availability of half precision arithmetics
motivated by deep learning fed the need for mixed precision algorithms:

ä Accounting for extra precision (e.g., fp128), which has been made
available again through software developments, we can generally
access four different arithmetics: fp16, fp32, fp64, fp128 (say).
⇒ Optimizing the computer performance pass through exploiting
and combining efficiently each of these arithmetics!
ä While still many applications can handle single precision accuracy,
a full half precision solution is not enough!
⇒ Half precision cannot be used alone!

24/44

The rise of half precision(s)

(1) Computing the residual: ri = b− Axi

(extra)

(2) Solving the correction equation: Adi = ri

(working)

(3) Updating the solution: xi+1 = xi + di.

(working)

From the 2010s, the increasing availability of half precision arithmetics
motivated by deep learning fed the need for mixed precision algorithms:

ä Accounting for extra precision (e.g., fp128), which has been made
available again through software developments, we can generally
access four different arithmetics: fp16, fp32, fp64, fp128 (say).
⇒ Optimizing the computer performance pass through exploiting
and combining efficiently each of these arithmetics!
ä While still many applications can handle single precision accuracy,
a full half precision solution is not enough!
⇒ Half precision cannot be used alone!

⇒ Interest over mixed precision algorithms skyrocketed! 24/44

Towards more versatility

(1) Computing the residual: ri = b− Axi (extra)
(2) Solving the correction equation: Adi = ri (working)
(3) Updating the solution: xi+1 = xi + di. (working)

Review of the past iterative refinement uses:

ä Extra precision on the residual for a better accuracy.

25/44

Towards more versatility

(1) Computing the residual: ri = b− Axi (working)
(2) Solving the correction equation: Adi = ri (working)
(3) Updating the solution: xi+1 = xi + di. (working)

Review of the past iterative refinement uses:

ä Extra precision on the residual for a better accuracy.

ä Fixed precision for stability.

25/44

Towards more versatility

(1) Computing the residual: ri = b− Axi (working)
(2) Solving the correction equation: Adi = ri (low)
(3) Updating the solution: xi+1 = xi + di. (working)

Review of the past iterative refinement uses:

ä Extra precision on the residual for a better accuracy.

ä Fixed precision for stability.

ä Low precision on the solver for improved performance.

25/44

Towards more versatility

(1) Computing the residual: ri = b− Axi (extra)
(2) Solving the correction equation: Adi = ri (low)
(3) Updating the solution: xi+1 = xi + di. (working)

Review of the past iterative refinement uses:

ä Extra precision on the residual for a better accuracy.

ä Fixed precision for stability.

ä Low precision on the solver for improved performance.

All can be achieved at once!

“[...] by using three precisions instead of two in iterative refinement,
it is possible to accelerate the solution process and to obtain more
accurate results for a wider class of problems.” Erin Carson and
Nicholas J. Higham, 2018.

comment-alt

25/44

Towards more versatility

(1) Computing the residual: ri = b− Axi (extra)
(2) Solving the correction equation: Adi = ri (low)
(3) Updating the solution: xi+1 = xi + di. (working)

Review of the past iterative refinement uses:

ä Extra precision on the residual for a better accuracy.

ä Fixed precision for stability.

ä Low precision on the solver for improved performance.

All can be achieved at once!

📔 “A New Analysis of Iterative Refinement and Its Application to Accurate Solution of
Ill-Conditioned Sparse Linear Systems” by Erin Carson and Nicholas J. Higham, 2017.

📔 “Accelerating the Solution of Linear Systems by Iterative Refinement in Three
Precisions” by Erin Carson and Nicholas J. Higham, 2018.

25/44

Ongoing topic!

(1) Computing the residual: ri = b− Axi (extra)
(2) Solving the correction equation: Adi = ri (low)
(3) Updating the solution: xi+1 = xi + di. (working)

It is still a hot topic!

📔 “Harnessing GPU Tensor Cores for Fast FP16 Arithmetic to Speed up Mixed-Precision
Iterative Refinement Solvers” by Azzam Haidar at al., 2018.

📔 “Improving the Performance of the GMRES Method Using Mixed-Precision
Techniques” by Neil Lindquist at al., 2020.

📔 “Accelerating Geometric Multigrid Preconditioning with Half-Precision Arithmetic on
GPUs” by Kyaw L. Oo and Andreas Vogel, 2020.

📔 “Exploiting lower precision arithmetic in solving symmetric positive definite linear
systems and least squares problems.” by Nicholas J. Higham and Srikara Pranesh, 2021.

📔 “Mixed Precision GMRES-based Iterative Refinement with Recycling” by Eda Oktay
and Erin Carson, 2022. 26/44

History summary

Extra precision Fixed precision Low precision

Better accuracy
Extra precision

for the computation
of the residual.

Recover stability
Residual, correction
equation, and update,

all computed
in working precision.

Get performance
Solver run

in low precision
for the correction

equation.

All in one
Extra precision
on the residual
and low on the

solver.

1948
First

appearance.

1963
First analysis.

1977
Analysis in

fixed precision.

2006
Low precision
factorization.

2018
Generalized
analysis.

1950 1960 1970 1980 1990 2000 2010 2020

📔 “Mixed precision iterative refinement for the solution of large sparse linear systems”
by Bastien Vieublé, 2022.

27/44

State-of-the-art mixed precision
iterative refinement (all-in-one)

Generalized iterative refinement

Algorithm Generalized iterative refinement
1: Initialize x0
2: while not converged do
3: Compute ri = b− Axi (ur)

4: Solve Adi = ri (us)

5: Compute xi+1 = xi + di (u)
6: end while

ä The precisions ur, us, and u are arbitrary. Depending on the
context, they refer to a floating point arithmetic, its unit roundoff, or
the accuracy of the operation.
ä The linear solver at step 4 is arbitrary.

Any analysis on generalized iterative refinement holds for any specialization
of this algorithm. That is, for a given solver and a given set of precisions.

28/44

Generalized iterative refinement

Algorithm Generalized iterative refinement
1: Initialize x0
2: while not converged do
3: Compute ri = b− Axi (ur)

4: Solve Adi = ri (us)

5: Compute xi+1 = xi + di (u)
6: end while

Conditions on the solver at step 4:

d̂i = (I+ usEi)di, us∥Ei∥∞ < 1,

∥̂ri − Ad̂i∥∞ ≤ us(c1∥A∥∞∥d̂i∥∞ + c2∥̂ri∥∞),

where Ei, c1, and c2 are functions of n, A, r̂i, and us and have nonnegative
entries. We recall, the quantities with an “hat” are computed quantities.

28/44

Convergence of the forward error

Theorem (Forward error convergence)
Let generalized iterative refinement be applied to Ax = b where A ∈ Rn×n is
nonsingular, and assume the solver used meets the previous conditions. As
long as

ϕi ≡ 2us min(cond(A), κ∞(A)µi) + us∥Ei∥∞ ≪ 1,

the forward error is reduced on the ith iteration by a factor approximatively
ϕi until an iterate x̂i is produced for which

∥x− x̂∥∞
∥x∥∞

≲ 4nur cond(A, x) + u.

ä ϕi ≪ 1 is the convergence condition. It only depends on the
precision us of the solver. It is dominated by the term us∥Ei∥∞, such
that we simplify the condition by ϕi ≈ us∥Ei∥∞ ≪ 1.
ä 4nur cond(A, x) + u is the limiting accuracy. It only depends on u
and ur. If ur is chosen accurate enough, we can remove the
dependence on cond(A, x).

29/44

Convergence of the forward error

Theorem (Forward error convergence)
Let generalized iterative refinement be applied to Ax = b where A ∈ Rn×n is
nonsingular, and assume the solver used meets the previous conditions. As
long as

ϕi ≡ 2us min(cond(A), κ∞(A)µi) + us∥Ei∥∞ ≪ 1,

the forward error is reduced on the ith iteration by a factor approximatively
ϕi until an iterate x̂i is produced for which

∥x− x̂∥∞
∥x∥∞

≲ 4nur cond(A, x) + u.

ä ϕi ≪ 1 is the convergence condition. It only depends on the
precision us of the solver. It is dominated by the term us∥Ei∥∞, such
that we simplify the condition by ϕi ≈ us∥Ei∥∞ ≪ 1.
ä 4nur cond(A, x) + u is the limiting accuracy. It only depends on u
and ur. If ur is chosen accurate enough, we can remove the
dependence on cond(A, x).

29/44

LU-IR3: Specialization to LU direct solver

Algorithm LU-based iterative refinement in three precisions

1: Compute the LU factorization A = L̂Û (uf)

2: Solve Ax0 = b (uf)

3: while not converged do
4: Compute ri = b− Axi (ur)

5: Solve Adi = ri by di = Û−1L̂−1ri (uf)

6: Compute xi+1 = xi + di (u)
7: end while

30/44

LU-IR3: Specialization to LU direct solver

Algorithm LU-based iterative refinement in three precisions

1: Compute the LU factorization A = L̂Û O(n3) (uf)

2: Solve Ax0 = b O(n2) (uf)

3: while not converged do
4: Compute ri = b− Axi O(n2) (ur)

5: Solve Adi = ri by di = Û−1L̂−1ri O(n2) (uf)

6: Compute xi+1 = xi + di O(n) (u)
7: end while

The strategy is to accelerate with low precisions the factorization O(n3) and
recover a good accuracy by using higher precisions for the residual and
update O(n2).

⇒ We are faster than an LU direct solver in precision u and as accurate!

30/44

LU-IR3: Specialization to LU direct solver

Algorithm LU-based iterative refinement in three precisions

1: Compute the LU factorization A = L̂Û O(n3) (uf)

2: Solve Ax0 = b O(n2) (uf)

3: while not converged do
4: Compute ri = b− Axi O(n2) (ur)

5: Solve Adi = ri by di = Û−1L̂−1ri O(n2) (uf)

6: Compute xi+1 = xi + di O(n) (u)
7: end while

From the previous theorem we know that the limiting accuracy is of order
ur cond(A) + u.

AND the convergence condition is us∥Ei∥∞ ≪ 1 ⇒ We need to determine us

and ∥Ei∥∞ for the case of the LU solver!

30/44

LU-IR3: Specialization to LU direct solver

Algorithm LU-based iterative refinement in three precisions

1: Compute the LU factorization A = L̂Û O(n3) (uf)

2: Solve Ax0 = b O(n2) (uf)

3: while not converged do
4: Compute ri = b− Axi O(n2) (ur)

5: Solve Adi = ri by di = Û−1L̂−1ri O(n2) (uf)

6: Compute xi+1 = xi + di O(n) (u)
7: end while

We know that the LU solver provide a solution satisfying

∥di − d̂i∥∞
∥di∥∞

≪ ufκ∞(A).

We identify us∥Ei∥∞ ≡ ufκ∞(A) knowing that by definition we have

∥di − d̂i∥∞
∥di∥∞

≤ us∥Ei∥∞.

30/44

LU-IR3: Specialization to LU direct solver

Algorithm LU-based iterative refinement in three precisions

1: Compute the LU factorization A = L̂Û O(n3) (uf)

2: Solve Ax0 = b O(n2) (uf)

3: while not converged do
4: Compute ri = b− Axi O(n2) (ur)

5: Solve Adi = ri by di = Û−1L̂−1ri O(n2) (uf)

6: Compute xi+1 = xi + di O(n) (u)
7: end while

Convergence condition Forward error

LU-IR3 ufκ(A) ≪ 1 urκ(A) + u

Limit: Very low precision factorization leads to a very restrictive
convergence condition for LU-IR3 (e.g., with uf = fp16 we have
κ(A) ≪ 2× 103).

30/44

LU-GMRES-IR5: Get more robust

Algorithm GMRES-based iterative refinement in five precisions

1: Compute the LU factorization A = L̂Û (uf)

2: Solve Ax0 = b (uf)

3: while not converged do
4: Compute ri = b− Axi (ur)

5: Solve Û−1L̂−1Adi = Û−1L̂−1ri by GMRES at precision (ug) with ma-
trix vector products with Ã = Û−1L̂−1A at precision (up)

6: Compute xi+1 = xi + di (u)
7: end while

📔 “A New Analysis of Iterative Refinement and Its Application to Accurate Solution of
Ill-Conditioned Sparse Linear Systems” by Erin Carson and Nicholas J. Higham, 2017.

📔 “Five-precicion GMRES-based iterative refinement” by Amestoy, Buttari, L’Excellent,
Higham, Mary, Vieublé, 2023.

31/44

LU-GMRES-IR5: Get more robust

Algorithm GMRES-based iterative refinement in five precisions

1: Compute the LU factorization A = L̂Û (uf)

2: Solve Ax0 = b (uf)

3: while not converged do
4: Compute ri = b− Axi (ur)

5: Solve Û−1L̂−1Adi = Û−1L̂−1ri by GMRES at precision (ug) with ma-
trix vector products with Ã = Û−1L̂−1A at precision (up)

6: Compute xi+1 = xi + di (u)
7: end while

ä Based on GMRES solver which is a well-known Krylov subspace based
iterative solver.
ä LU-GMRES-IR5 is a more robust form of iterative refinement capable
of tackling higher condition numbers κ(A) than LU-IR3.

31/44

LU-GMRES-IR5: Get more robust

Algorithm GMRES-based iterative refinement in five precisions

1: Compute the LU factorization A = L̂Û (uf)

2: Solve Ax0 = b (uf)

3: while not converged do
4: Compute ri = b− Axi (ur)

5: Solve Û−1L̂−1Adi = Û−1L̂−1ri by GMRES at precision (ug) with ma-
trix vector products with Ã = Û−1L̂−1A at precision (up)

6: Compute xi+1 = xi + di (u)
7: end while

Convergence condition Forward error

LU-IR3 κ(A)uf ≪ 1 urκ(A) + u
LU-GMRES-IR5 (ug + upκ(A))(1+ u2

fκ(A)2) ≪ 1a urκ(A) + u

aThe proof for the convergence condition of LU-GMRES-IR5 still relies on identifying
us and Ei , but is a bit more technical. We will not attempt to do it here. 31/44

LU-GMRES-IR5: Get more robust

Algorithm GMRES-based iterative refinement in five precisions

1: Compute the LU factorization A = L̂Û (uf)

2: Solve Ax0 = b (uf)

3: while not converged do
4: Compute ri = b− Axi (ur)

5: Solve Û−1L̂−1Adi = Û−1L̂−1ri by GMRES at precision (ug) with ma-
trix vector products with Ã = Û−1L̂−1A at precision (up)

6: Compute xi+1 = xi + di (u)
7: end while

Convergence condition Forward error

LU-IR3 κ(A)uf ≪ 1 urκ(A) + u
LU-GMRES-IR5 (ug + upκ(A))(1+ u2

fκ(A)2) ≪ 1 urκ(A) + u

Example: If uf = fp16, the condition on LU-IR3 is 2× 103, on LU-GMRES-IR5
with ug = fp64 and up = fp128 it is 2× 1011! 31/44

LU-IR3 Vs LU-GMRES-IR5: Theoretical robustness

ug up
Convergence Condition

(max(κ(A)))

LU-IR3 2× 103

R S 8× 103

B S 3× 104

H S 4× 104

H D 9× 104

S D 8× 106

D D 3× 107

D Q 2× 1011

Combinations of LU-GMRES-IR5 for uf = H and u = D.

ä The more we increase the precisions ug and up, the more robust we are.
ä LU-GMRES-IR5 is flexible regarding the conditioning of the problems
and the choice of precisions ⇒ It offers finer trade-offs between
robustness and performance!

32/44

LU-IR3 Vs LU-GMRES-IR5: Experimental robustness

100 104 108 1012 1016

100

10−4

10−8

10−12

10−16

κ(A)

Error
LU-IR3

Forward errors of 250 SuiteSparse matrices of various conditioning. We fix
uf = H, u = D, and ur = Q.

33/44

LU-IR3 Vs LU-GMRES-IR5: Experimental robustness

100 104 108 1012 1016

100

10−4

10−8

10−12

10−16

κ(A)

Error
ug = H and up = S

Forward errors of 250 SuiteSparse matrices of various conditioning. We fix
uf = H, u = D, and ur = Q.

33/44

LU-IR3 Vs LU-GMRES-IR5: Experimental robustness

100 104 108 1012 1016

100

10−4

10−8

10−12

10−16

κ(A)

Error
ug = S and up = S

Forward errors of 250 SuiteSparse matrices of various conditioning. We fix
uf = H, u = D, and ur = Q.

33/44

LU-IR3 Vs LU-GMRES-IR5: Experimental robustness

100 104 108 1012 1016

100

10−4

10−8

10−12

10−16

κ(A)

Error
ug = S and up = D

Forward errors of 250 SuiteSparse matrices of various conditioning. We fix
uf = H, u = D, and ur = Q.

33/44

LU-IR3 Vs LU-GMRES-IR5: Experimental robustness

100 104 108 1012 1016

100

10−4

10−8

10−12

10−16

κ(A)

Error
ug = D and up = D

Forward errors of 250 SuiteSparse matrices of various conditioning. We fix
uf = H, u = D, and ur = Q.

33/44

Performance profile: #iterations comparison

2 4 6 8 10

20%

40%

60%

80%

100%

α

ug = D and up = D
ug = S and up = D
ug = S and up = S
ug = H and up = S

LU: uf = H

Percentage of the 250 SuiteSparse matrices for which a given combination
requires less than α times the number of iterations required by the best

combination. We set uf = H.
34/44

Performance analysis on sparse
problems using numerical
approximations

LU Sparse Direct Factorization: Fill-in

A multifrontal sparse factorization can be decomposed into a series of
factorizations of dense matrices whose dependencies are represented by an
assembly tree:

• • • •
• • • • •

• • • • •
• • • • • •

• • • • • •
• • • • • •

• • • • • •
• • • • • •

• • • • • •
• • • • • • •

• • • • • • •
• • • • • • •

• • • • • • •
• • • • • • •

• • • • • • •
• • • • • • •

• • • • • • •
• • • • • • •

• • • • • •
• • • • • •

• • • • • •
• • • • • •

• • • • • •
• • • • • •

• • • • •
• • • • •

• • • •





A

→

• • • •
• • • • • • •

• • • • • • • •
• • • • • • • • • • •

• • • • • • • • • • • •
• • • • • • • • • • • • •

• • • • • • • • • • • • •
• • • • • • • • • • • • •

• • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • •

• • • • • • • • • • • • • •
• • • • • • • • • • • • •

• • • • • • • • • • • •
• • • • • • • • • • •

• • • • • • • • • •





LU
(fill-in)

ä The red parts are the LU entries, the green part are temporary data.
ä The multifrontal factorization total memory consumption is higher than
the factors in memory. The difference is called the active memory overhead.

35/44

Multifrontal LU Sparse Direct Factorization

A multifrontal solver decomposes the sparse factorization into a series of
partial factorizations of dense matrices whose dependencies are
represented by an assembly tree:

• • • •
• • • • •

• • • • •
• • • • • •

• • • • • •
• • • • • •

• • • • • •
• • • • • •

• • • • • •
• • • • • • •

• • • • • • •
• • • • • • •

• • • • • • •
• • • • • • •

• • • • • • •
• • • • • • •

• • • • • • •
• • • • • • •

• • • • • •
• • • • • •

• • • • • •
• • • • • •

• • • • • •
• • • • • •

• • • • •
• • • • •

• • • •





A

→

ä The red parts are the LU entries, the green part are temporary data.
ä In multifrontal factorization the total memory consumption is higher than
the factors in memory. The difference is called the active memory overhead.

36/44

Specific features of sparse iterative refinement

Algorithm Iterative refinement: complexities Dense VS Sparse
1: Compute the LU factorization A = LU O(n3) O(n2) (uf)

2: Solve Ax0 = b O(n2) O(n4/3) (uf)

3: while not converged do
4: Compute ri = b− Axi O(n2) O(n) (ur)

5: Solve Adi = ri. O(n2) O(n4/3) (us)

6: Compute xi+1 = xi + di O(n) O(n) (u)
7: end while

Fill-in in sparse direct solvers, i.e. NNZ(A) ≪ NNZ(LU)!

37/44

Specific features of sparse iterative refinement

Algorithm Iterative refinement: complexities Dense VS Sparse
1: Compute the LU factorization A = LU O(n3) O(n2) (uf)

2: Solve Ax0 = b O(n2) O(n4/3) (uf)

3: while not converged do
4: Compute ri = b− Axi O(n2) O(n) (ur)

5: Solve Adi = ri. O(n2) O(n4/3) (us)

6: Compute xi+1 = xi + di O(n) O(n) (u)
7: end while

Fill-in in sparse direct solvers, i.e. NNZ(A) ≪ NNZ(LU)!

ä SpMV much cheaper than solve ⇒ ur ≪ u has limited impact
on performance (even for ur = fp128).

37/44

Specific features of sparse iterative refinement

Algorithm Iterative refinement: complexities Dense VS Sparse
1: Compute the LU factorization A = LU O(n3) O(n2) (uf)

2: Solve Ax0 = b O(n2) O(n4/3) (uf)

3: while not converged do
4: Compute ri = b− Axi O(n2) O(n) (ur)

5: Solve Adi = ri. O(n2) O(n4/3) (us)

6: Compute xi+1 = xi + di O(n) O(n) (u)
7: end while

Fill-in in sparse direct solvers, i.e. NNZ(A) ≪ NNZ(LU)!

ä Memory space of A in ur (O(n) entries) negligible compared
with the LU factors in uf (O(n4/3) entries)⇒ LU-IR3 saves memory
over a direct solver in u!

37/44

Specific features of sparse iterative refinement

Algorithm Iterative refinement: complexities Dense VS Sparse
1: Compute the LU factorization A = LU O(n3) O(n2) (uf)

2: Solve Ax0 = b O(n2) O(n4/3) (uf)

3: while not converged do
4: Compute ri = b− Axi O(n2) O(n) (ur)

5: Solve Adi = ri. O(n2) O(n4/3) (us)

6: Compute xi+1 = xi + di O(n) O(n) (u)
7: end while

Fill-in in sparse direct solvers, i.e. NNZ(A) ≪ NNZ(LU)!

ä (Multifrontal only) Even if LU-GMRES-IR5 fully stores the factors
in up = u, it does not need to store the active memory in up = u
⇒ LU-GMRES-IR5 can save memory over a direct solver in u.

37/44

Specific features of approximate factorization

Algorithm LU-IR3: complexities Sparse VS Approximations
1: Compute the LU factorization A = L̂Û O(n2) O(nα) (ϵ)

2: Solve Ax0 = b O(n4/3) O(nβ) (ϵ)

3: while not converged do
4: Compute ri = b− Axi O(n) O(n) (ur)

5: Solve Adi = ri by di = Û−1L̂−1ri. O(n4/3) O(nβ) (ϵ)

6: Compute xi+1 = xi + di O(n) O(n) (u)
7: end while

ä Where 2 ≥ α and 4/3 ≥ β.
ä Reduce the complexity at the cost of introducing a (controlled)
perturbation ϵ in the factorization and solve.
ä We use Block Low-Rank and static pivoting approximations in
our experiments.

38/44

Implemented parallel methods

Solver uf u ur ug up
max(κ(A))
(ϵ = 0)

forward error

DMUMPS fp64 LU direct solver — κ(A)× 10−16

LU-IR S D D — — 2× 107 κ(A)× 10−16

LU-GMRES-IR S D D D D 1× 1010 κ(A)× 10−16

ä LU-IR and LU-GMRES-IR use single precision (fp32) factorization
and numerical approximations to save resources.

ä We use the multifrontal sparse solver MUMPS. While we expect
our conclusions on the execution time to hold for all direct sparse
solvers. Our conclusions on the memory consumption related to
the active memory are specific to the multifrontal solvers.

39/44

Matrix set

Name N NNZ Arith. Sym. κ(A) Fact.
(flops)

Slv.
(flops)

ElectroPhys10M 1.02E+07 1.41E+08 R 1 1.10E+01 4E+14 9E+10
DrivAer6M 6.11E+06 4.97E+07 R 1 9.40E+05 6E+13 3E+10

Queen_4147 4.14E+06 3.28E+08 R 1 4.30E+06 3E+14 6E+10
tminlet3M 2.84E+06 1.62E+08 C 0 2.70E+07 1E+14 2E+10
perf009ar 5.41E+06 2.08E+08 R 1 3.70E+08 2E+13 2E+10

elasticity-3d 5.18E+06 1.16E+08 R 1 3.60E+09 2E+14 5E+10
lfm_aug5M 5.52E+06 3.71E+07 C 1 5.80E+11 2E+14 5E+10

CarBody25M 2.44E+07 7.06E+08 R 1 8.60E+12 1E+13 3E+10
thmgas 5.53E+06 3.71E+07 R 0 8.28E+13 1E+14 4E+10

Set of industrial and SuiteSparse matrices.

ä The matrices are ordered in increasing κ(A), the higher κ(A) is,
the slower the convergence (if reached at all).

40/44

Matrix set

Name N NNZ Arith. Sym. κ(A) Fact.
(flops)

Slv.
(flops)

ElectroPhys10M 1.02E+07 1.41E+08 R 1 1.10E+01 4E+14 9E+10
DrivAer6M 6.11E+06 4.97E+07 R 1 9.40E+05 6E+13 3E+10

Queen_4147 4.14E+06 3.28E+08 R 1 4.30E+06 3E+14 6E+10
tminlet3M 2.84E+06 1.62E+08 C 0 2.70E+07 1E+14 2E+10
perf009ar 5.41E+06 2.08E+08 R 1 3.70E+08 2E+13 2E+10

elasticity-3d 5.18E+06 1.16E+08 R 1 3.60E+09 2E+14 5E+10
lfm_aug5M 5.52E+06 3.71E+07 C 1 5.80E+11 2E+14 5E+10

CarBody25M 2.44E+07 7.06E+08 R 1 8.60E+12 1E+13 3E+10
thmgas 5.53E+06 3.71E+07 R 0 8.28E+13 1E+14 4E+10

Set of industrial and SuiteSparse matrices.

ä We run on OLYMPE supercomputer nodes (two Intel 18-cores
Skylake/node), 1 node (2MPI×18threads) or 2 nodes
(4MPI×18threads) depending on the matrix size.

40/44

Time and memory performance w.r.t. DMUMPS (no approx)

Time
El
ec

tro
Ph

ys
10
M

Dr
iv
Ae

r6
M

Qu
ee

n_
41
47

tm
in
le
t3
M

pe
rf0

09
ar

el
as
tic

ity
-3
d

lfm
_a

ug
5M

Ca
rB
od

y2
5M

th
m
ga

s
0%

25%

50%

75%

100%

1.7

1.4

1.7
2.2

no
co

nv
er
ge

nc
e

2.1

no
co

nv
er
ge

nc
e

1.51.6

1.2

1.5
1.9

0.9

1.3

2

1.2

Memory

El
ec

tro
Ph

ys
10
M

Dr
iv
Ae

r6
M

Qu
ee

n_
41
47

tm
in
le
t3
M

pe
rf0

09
ar

el
as
tic

ity
-3
d

lfm
_a

ug
5M

Ca
rB
od

y2
5M

th
m
ga

s

0%

25%

50%

75%

100%

2 2 2 2 1.9

no
co

nv
er
ge

nc
e

2

no
co

nv
er
ge

nc
e

2
1.6 1.5 1.6

1.4 1.5 1.5
1.7

1.4 1.4

LU-IR LU-GMRES-IR

41/44

Time and memory performance w.r.t. DMUMPS (no approx)

Time
El
ec

tro
Ph

ys
10
M

Dr
iv
Ae

r6
M

Qu
ee

n_
41
47

tm
in
le
t3
M

pe
rf0

09
ar

el
as
tic

ity
-3
d

lfm
_a

ug
5M

Ca
rB
od

y2
5M

th
m
ga

s
0%

25%

50%

75%

100%

1.7

1.4

1.7
2.2

no
co

nv
er
ge

nc
e

2.1

no
co

nv
er
ge

nc
e

1.51.6

1.2

1.5
1.9

0.9

1.3

2

1.2

Memory

El
ec

tro
Ph

ys
10
M

Dr
iv
Ae

r6
M

Qu
ee

n_
41
47

tm
in
le
t3
M

pe
rf0

09
ar

el
as
tic

ity
-3
d

lfm
_a

ug
5M

Ca
rB
od

y2
5M

th
m
ga

s

0%

25%

50%

75%

100%

2 2 2 2 1.9

no
co

nv
er
ge

nc
e

2

no
co

nv
er
ge

nc
e

2
1.6 1.5 1.6

1.4 1.5 1.5
1.7

1.4 1.4

LU-IR LU-GMRES-IR

ä LU-IR up to 2.2× faster.
ä LU-GMRES-IR up to 1.9× faster.

Slower than LU-IR, but more
robust.

ä LU-IR consumes 2× less memory.
ä LU-GMRES-IR consumes at best

1.7× less despite factors in
double ⇒ save active memory.

41/44

Best time and memory achieved w.r.t. DMUMPS (with approx)

Time
El
ec

tro
Ph

ys
10
M

Dr
iv
Ae

r6
M

Qu
ee

n_
41
47

tm
in
le
t3
M

pe
rf0

09
ar

el
as
tic

ity
-3
d

lfm
_a

ug
5M

Ca
rB
od

y2
5M

th
m
ga

s
0%

25%

50%

75%

100%

5.2

2.4

4.7 4.2

no
co

nv
er
ge

nc
e

5.6
no

co
nv

er
ge

nc
e

1.9

1.3

2.8

Memory

El
ec

tro
Ph

ys
10
M

Dr
iv
Ae

r6
M

Qu
ee

n_
41
47

tm
in
le
t3
M

pe
rf0

09
ar

el
as
tic

ity
-3
d

lfm
_a

ug
5M

Ca
rB
od

y2
5M

th
m
ga

s

0%

25%

50%

75%

100%

3.8

no
co

nv
er
ge

nc
e

no
co

nv
er
ge

nc
e

3.6 3.5 3.4
2.8

3.9 3.4

1.9

4.2

LU-IR LU-GMRES-IR

⇒ Up to 5.6× faster and 4.2× less memory with the same accuracy
on the solution than the double direct LU solver!
📔 “Combining sparse approximate factorization with mixed precision iterative
refinement” by Amestoy, Buttari, L’Excellent, Higham, Mary, Vieublé, 2022.

42/44

Conclusion

The lecture in a nutshell

ä Low precisions are a potential source of substantial
resource savings BUT they degrade the accuracy of the solution.
ä Iterative refinement is one of the first mixed precision
algorithm. It was implemented on the first computers.
ä Iterative refinement can be used to efficiently exploit low
precisions while safely improving the accuracy of the solution.
ä The ability or not of iterative refinement to improve the
solution depends on the condition number of the problem (i.e.,
κ(A)).
ä Iterative refinement has been proven extremely efficient at
computing the solution of large parallel sparse systems coming
from real-life and industrial applications.

43/44

Question Time !

44/44

	On solving linear systems
	Low precision arithmetics
	Introduction to iterative refinement
	From the 40s to the 70s
	From the 70s to the 2000s
	From the 2000s to the 2010s
	From the mid 2010s to now
	State-of-the-art mixed precision iterative refinement (all-in-one)
	Performance analysis on sparse problems using numerical approximations
	Conclusion

