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Section 1

Background on solving linear systems



Linear systems

Ax = b,

A ∈ Rn×n, b ∈ Rn, x ∈ Rn
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Linear systems

Ax = b,

A ∈ Rn×n, b ∈ Rn, x ∈ Rn

Various challenges: numerical difficulties, different al-
gorithms, parallelism, computer hardware, etc.
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Fat problems require fat computers!

→ →

Large-scale linear systems...
Up to billions of unknowns, applications demanding enormous amount of
memory and flops of computation.
For a dense problem of size n = 107, storing the matrix requires TBytes of
memory, factorizing the matrix requires Exaflops of computation!

...require large-scale computers.
Increasingly large numbers of cores available, high heterogeneity in the
computation (CPU, GPU, FPGA, TPU, etc), and high heterogeneity in data
motions (RAM to cache, disk to RAM, node to node, etc).
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Two main kinds of solvers

What are the ways to solve a sparse Ax = b ∈ Rn on computers?

Iterative solvers
Compute a sequence of xk converging towards x .
Examples: Gauss-Seidel, SOR, Krylov subspace methods, etc.

ä Low computational cost and memory consumption if the convergence is
quick...
ä BUT convergence depends on the matrix properties.

Direct solvers
Based on a factorization of A.
Examples: LDLT, LU, QR, etc.

ä High computational cost and memory consumption...
ä BUT they are robust and easy to use.

⇒ For both, the reduction of the computational cost is the focus of
much research.
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Reduce the cost by reducing the complexity

Approximate computing: deliberately approximate the computations in
order to improve the performance at the cost of introducing a perturbation.

ä The perturbed problem should be close to the original one and
should reduce time and/or memory!

ä In general the larger the perturbations the larger the savings...

ä BUT large perturbations = low accuracy!

Examples: low precision, randomization/sketching, low-rank approximations,
tensor compression, etc.
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Reduce the cost by reducing the complexity

Approximate computing: deliberately approximate the computations in
order to improve the performance at the cost of introducing a perturbation.

ä The perturbed problem should be close to the original one and
should reduce time and/or memory!

ä In general the larger the perturbations the larger the savings...

ä BUT large perturbations = low accuracy!

Examples: low precision, randomization/sketching, low-rank approximations,
tensor compression, etc.

⇒ Iterative refinement can correct cheaply the inaccuracies
introduced by approximate computing.
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Section 2

Low precision arithmetics and mixed precision
algorithms



Introduction to floating point numbers

Floating point format
Main format for representing real numbers in computers. A number is of the form:

x = ±m × βe

Base β (usually 2).
± is the bit of sign.
The mantissa m is an integer represented in base β.
The exponent e is an integer represented in base β.

ä The mantissa carries the significant digits (i.e., how accurate can be the
numbers).

ä The exponent carries the range (i.e., how far is the lowest and highest
representable number).

Examples: 1.4723 = + 14723︸ ︷︷ ︸
mantissa

×

exponent︷︸︸︷
−4

10︸︷︷︸
β

, −92 = − 010111︸ ︷︷ ︸
23

×

2︷︸︸︷
0010
2︸︷︷︸
β
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Introduction to floating point numbers

Floating point format
Main format for representing real numbers in computers. A number is of the form:

x = ±m × βe

Base β (usually 2).
± is the bit of sign.
The mantissa m is an integer represented in base β.
The exponent e is an integer represented in base β.

The unit roundoff u determines the relative accuracy any number in the
representable range [emin, emax] can be approximated with:

∀x ∈ [emin, emax] ⊂ R, f l(x) = x(1 + δ), |δ| ≤ u,

where f l(x) is the floating point representation of a real number x , and
δ the relative difference between this representation and x .
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More notations

ä The condition number of a matrix is a measure of its ”numerical
difficulty”. We will use the two quantities

κ(A) = ‖A‖‖A−1‖, cond(A) = ‖|A||A−1|‖.

ä Consider the linear system Ax = b, we note x̂ the computed solu-
tion in floating point.

ä We define the forward error of our computed solution as

fwd = ‖x̂ − x‖
‖x‖

.
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Commonly available floating point arithmetics

ID Signif. bits Exp. bits Range Unit roundoff u

fp128 Q 113 15 10±4932 1 × 10−34

double-fp64 DD 107 11 10±308 6 × 10−33

fp64 D 53 11 10±308 1 × 10−16

fp32 S 24 8 10±38 6 × 10−8

tfloat32 T 11 8 10±38 5 × 10−4

fp16 H 11 5 10±5 5 × 10−4

bfloat16 B 8 8 10±38 4 × 10−3

fp8 (E4M3) R 4 4 10±2 6.3 × 10−2

fp8 (E5M2) R* 3 5 10±5 1.3 × 10−1

📔“Floating-point arithmetic” by Boldo et al., 2023, Acta Numerica.
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Why using low precision arithmetics ?

Low precision arithmetics = less accurate + narrower range

BUT 3 main advantages:

ä Storage, data movement and communications are all proportional
to the total number of bits. ⇒ Time and memory savings!
ä Speed of computation is also at least proportional to the total number
of bits. ⇒ Time savings!
ä Power consumption is dependent on the number of bits.
⇒ Energy savings!

As reducing time, memory, and energy consumption are all challenging objectives,
low precisions have become the Wild West of HPC!
📔“Low Precision Floating-Point Formats: The Wild West of Computer Arithmetic” by
Pranesh, 2019, SIAM news.
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The fundamental dilemma of low precision arithmetics

Problem
ä Low precisions greatly improve performance of linear solvers...
ä BUT they degrade their accuracy at the same time.
ä Application experts generally require “high accuracy” on the
solution (i.e., most commonly single or double precision accuracy).

Idea: What if we could use low precisions to accelerate the most expensive
parts of the computation, and use higher precision only on some strategic
operations to recover the lost accuracy at low cost?

⇒ This is the goal of mixed precision algorithms!
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Section 3

Introduction to iterative refinement



Newton’s method for correcting linear systems

Newton’s method consists in building approximations xi ∈ Rn converging
toward a zero x of a differentiable function f : Rn → Rn:

xi+1 = xi − (∇f (xi))−1f (xi).
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Newton’s method for correcting linear systems

Newton’s method consists in building approximations xi ∈ Rn converging
toward a zero x of a differentiable function f : Rn → Rn:

xi+1 = xi − (∇f (xi))−1f (xi).

We can correct the solution of linear systems by applying Newton’s method
to the residual f (x) = Ax − b. The procedure becomes

xi+1 = xi + A−1(b − Axi),
and can be decomposed into three steps

(1) Computing the residual: ri = b − Axi

(2) Solving the correction equation: Adi = ri

(3) Updating the solution: xi+1 = xi + di .

Newton’s method for the correction of linear systems is called iterative
refinement.
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On the effect of rounding errors

(1) Computing the residual: ri = b − Axi

(working)

(2) Solving the correction equation: Adi = ri

(working)

(3) Updating the solution: xi+1 = xi + di .

(working)

In exact arithmetic and without errors, the iterative refinement procedure
gives the solution x = A−1b in one iteration!
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On the effect of rounding errors

(1) Computing the residual: ri = b − Axi

(working)

(2) Solving the correction equation: Adi = ri

(working)

(3) Updating the solution: xi+1 = xi + di .

(working)

In exact arithmetic and without errors, the iterative refinement procedure
gives the solution x = A−1b in one iteration!

However, on computers, every step is computed in inexact arithmetic
with eventually numerical approximations, which lead to the presence of
computing errors in every of these steps.

⇒ What is the impact of these errors in the procedure ?
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On the effect of rounding errors

(1) Computing the residual: ri = b − Axi

(working)

(2) Solving the correction equation: Adi = ri

(working)

(3) Updating the solution: xi+1 = xi + di .

(working)

x0x

f (x) = Ax − b
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On the effect of rounding errors

(1) Computing the residual: ri = b − Axi

(working)

(2) Solving the correction equation: Adi = ri

(working)

(3) Updating the solution: xi+1 = xi + di .

(working)

x0x

f (x0)

f (x) = Ax − b
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On the effect of rounding errors

(1) Computing the residual: ri = b − Axi

(working)

(2) Solving the correction equation: Adi = ri

(working)

(3) Updating the solution: xi+1 = xi + di .

(working)

x0x

f̂ (x0)
f (x) = Ax − b
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On the effect of rounding errors

(1) Computing the residual: ri = b − Axi

(working)

(2) Solving the correction equation: Adi = ri

(working)

(3) Updating the solution: xi+1 = xi + di .
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x0x

∇f (x0)f (x) = Ax − b
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On the effect of rounding errors

(1) Computing the residual: ri = b − Axi

(working)

(2) Solving the correction equation: Adi = ri

(working)

(3) Updating the solution: xi+1 = xi + di .

(working)

x0x

∇̂f (x0)f (x) = Ax − b
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On the effect of rounding errors

(1) Computing the residual: ri = b − Axi

(working)

(2) Solving the correction equation: Adi = ri

(working)

(3) Updating the solution: xi+1 = xi + di .

(working)

x0x

f (x) = Ax − b

x1
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On the effect of rounding errors

(1) Computing the residual: ri = b − Axi

(working)

(2) Solving the correction equation: Adi = ri

(working)

(3) Updating the solution: xi+1 = xi + di .

(working)

x0x

f (x) = Ax − b

x̂1
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On the effect of rounding errors

(1) Computing the residual: ri = b − Axi

(working)

(2) Solving the correction equation: Adi = ri

(working)

(3) Updating the solution: xi+1 = xi + di .

(working)

x0x1x

f̂ (x1)

Bastien Vieublé Beyond iterative refinement 09/02/2026 12 / 56



On the effect of rounding errors

(1) Computing the residual: ri = b − Axi

(working)

(2) Solving the correction equation: Adi = ri

(working)

(3) Updating the solution: xi+1 = xi + di .

(working)

x0x1x

∇̂f (x1)
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On the effect of rounding errors

(1) Computing the residual: ri = b − Axi

(working)

(2) Solving the correction equation: Adi = ri

(working)

(3) Updating the solution: xi+1 = xi + di .

(working)

x0x1xx̂2
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Historical perspectives

(1) Computing the residual: ri = b − Axi

(extra)

(2) Solving the correction equation: Adi = ri

(working)

(3) Updating the solution: xi+1 = xi + di .

(working)

⇒ Iterative refinement can improve and correct the computed
solutions of linear solvers under computing errors.

Iterative refinement has been used for more than 70 years. It has con-
stantly been evolving over time, repeatedly reconsidered according to
trends, researcher’s interests, and hardware specifications, as well as the
computing challenges of each computing era.

⇒ History can give us a better understanding of why and how we
use this algorithm today!
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Section 4

From the 40s to the 70s



Origin

(1) Computing the residual: ri = b − Axi

(extra)

(2) Solving the correction equation: Adi = ri

(working)

(3) Updating the solution: xi+1 = xi + di .

(working)

Iterative refinement was imple-
mented on the first computers!

The fatherhood is generally at-
tributed to James H. Wilkinson
who first described, implemented,
and reported the algorithm into a
document.

📔“Progress report on the Auto-
matic Computing Engine” by Wilkin-
son, 1948.

Pilot ACE - One of the first
computers, designed by Alan Turing.
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Origin

(1) Computing the residual: ri = b − Axi

(extra)

(2) Solving the correction equation: Adi = ri

(working)

(3) Updating the solution: xi+1 = xi + di .

(working)

Iterative refinement was imple-
mented on the first computers!
The fatherhood is generally at-
tributed to James H. Wilkinson
who first described, implemented,
and reported the algorithm into a
document.
📔“Progress report on the Auto-
matic Computing Engine” by Wilkin-
son, 1948. James H. Wilkinson
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Two main pieces of context

(1) Computing the residual: ri = b − Axi

(extra)

(2) Solving the correction equation: Adi = ri

(working)

(3) Updating the solution: xi+1 = xi + di .

(working)

1st element of context - Special hardware design of that time allowed
costless accumulation of inner products in extra precision.

⇒ The residual could be computed in extra precision, the correction
equation and the update are computed in working precision.

“In multiplying two s-place numbers, most com-
puting machines do actually form the true 2s-
place product, and the rounding off to s-places
is a separate operation [...]” von Neumann and
Goldstine, 1947.

COMMENT-ALTCOMMENT-ALT
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Two main pieces of context

(1) Computing the residual: ri = b − Axi (extra)
(2) Solving the correction equation: Adi = ri (working)
(3) Updating the solution: xi+1 = xi + di . (working)

1st element of context - Special hardware design of that time allowed
costless accumulation of inner products in extra precision.

⇒ The residual could be computed in extra precision, the correction
equation and the update are computed in working precision.

‖x̂ − x‖2
‖x‖2

≤ κ(A)uworking ⇒ ‖x̂ − x‖2
‖x‖2

≤ uworking
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Two main pieces of context

(1) Computing the residual: ri = b − Axi (extra)
(2) Solving the correction equation: Adi = ri (working)
(3) Updating the solution: xi+1 = xi + di . (working)

1st element of context - Special hardware design of that time allowed
costless accumulation of inner products in extra precision.

⇒ The residual could be computed in extra precision, the correction
equation and the update are computed in working precision.

‖x̂ − x‖2
‖x‖2

≤ κ(A)uworking ⇒ ‖x̂ − x‖2
‖x‖2

≤ uworking

Mixed precision is not a new idea!
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Two main pieces of context

(1) Computing the residual: ri = b − Axi (extra)
(2) Solving the correction equation: Adi = ri (working)
(3) Updating the solution: xi+1 = xi + di . (working)

2nd element of context - Iterative refinement was focused on improving
stable direct solvers (e.g., Gaussian elimination with partial pivoting):

ä Iterative solvers were not so trendy (less robust and reliable, and
not particularly better in performance on low dimensional dense prob-
lems of this time).
ä It is computationaly interesting: the factorization A = LU (O(n3))
can be computed once, and the solve (O(n2)) are applied multiple
times ⇒ Refinement iterations are cheap!
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Two main pieces of context

(1) Computing the residual: ri = b − Axi (extra)
(2) Solving the correction equation: di = U\L\ri (working)
(3) Updating the solution: xi+1 = xi + di . (working)

2nd element of context - Iterative refinement was focused on improving
stable direct solvers (e.g., Gaussian elimination with partial pivoting):

ä Iterative solvers were not so trendy (less robust and reliable, and
not particularly better in performance on low dimensional dense prob-
lems of this time).

“Until recently, direct solution methods were often preferred to
iterative methods in real applications because of their robustness
and predictable behavior.” Saad, 2000.

COMMENT-ALTCOMMENT-ALT
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Two main pieces of context

(1) Computing the residual: ri = b − Axi (extra)
(2) Solving the correction equation: di = U\L\ri (working)
(3) Updating the solution: xi+1 = xi + di . (working)

All the studies of this period match this form of iterative
refinement.

📔“Notes on the solution of algebraic linear simultaneous equations” by Fox et al.,
1948, The Quarterly Journal of Mechanics and Applied Mathematics.
📔“On the improvement of the solutions to a set of simultaneous linear equations using
the ILLIAC” by Snyder, 1955, Mathematical Tables and Other Aids to Computation.
📔“Solution of real and complex systems of linear equations” by Bowdler et al., 1966,
Numerische Mathematik.
📔“Iterative refinement of the solution of a positive definite system of equations” by
Martin et al., 1971, Linear Algebra.
📔“Introduction to matrix computations” by Stewart, 1973, Academic Press.
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Rounding error analyses

(1) Computing the residual: ri = b − Axi (extra)
(2) Solving the correction equation: di = U\L\ri (working)
(3) Updating the solution: xi+1 = xi + di . (working)

“Since [...] the numbers [...] are all to a certain
extent approximate only, the results of all calcula-
tions performed by the aid of these numbers can
only be approximately true [...]” Gauss, 1809.

COMMENT-ALTCOMMENT-ALT
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Rounding error analyses

(1) Computing the residual: ri = b − Axi (extra)
(2) Solving the correction equation: di = U\L\ri (working)
(3) Updating the solution: xi+1 = xi + di . (working)

“Since [...] the numbers [...] are all to a certain
extent approximate only, the results of all calcula-
tions performed by the aid of these numbers can
only be approximately true [...]” Gauss, 1809.

COMMENT-ALTCOMMENT-ALT

⇒ The role of rounding error analyses is to discover to what
extent these calculations are approximately true!

Founding article of rounding error analysis:
📔“Numerical inverting of matrices of high order” by von Neumann and Goldstine,
1947, Bulletin of the American Mathematical Society.
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Rounding error analyses

(1) Computing the residual: ri = b − Axi (extra)
(2) Solving the correction equation: di = U\L\ri (working)
(3) Updating the solution: xi+1 = xi + di . (working)

Rounding error analyses of iterative refinement aim at both:
ä Determine the rate of convergence of the refinement. The rate
of convergence also define the convergence condition.
ä Determine to which accuracy the solution will be refined. This is
referred to as attainable or limiting accuracies.
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Rounding error analyses

(1) Computing the residual: ri = b − Axi (extra)
(2) Solving the correction equation: di = U\L\ri (working)
(3) Updating the solution: xi+1 = xi + di . (working)

Rounding error analyses of iterative refinement aim at both:
ä Determine the rate of convergence of the refinement. The rate
of convergence also define the convergence condition.
ä Determine to which accuracy the solution will be refined. This is
referred to as attainable or limiting accuracies.

Fixed point/block floating point:
📔“Rounding Errors in Algebraic Processes” by Wilkinson, 1963.
Floating point:
📔“Iterative refinement in floating point” by Moler, 1967, Journal of the ACM.
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Least squares problem: minx ‖b − Ax‖2

(1) Computing the residual: ri = b − Axi (extra)
(2) Solving the correction equation: di = R−1QT ri (working)
(3) Updating the solution: xi+1 = xi + di . (working)

ä Consistent or nearly-consistent system approach:

📔“Linear least squares solutions by Householder transformations” by Businger
and Golub, Numerische Mathematik.

📔“Note on the iterative refinement of least squares solution” by Golub and
Wilkinson, 1966, Numerische Mathematik.
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Least squares problem: minx ‖b − Ax‖2

(1) Computing the residual: ri = b − Axi (extra)
(2) Solving the correction equation: AT Adi = AT ri (working)
(3) Updating the solution: xi+1 = xi + di . (working)

ä Consistent or nearly-consistent system approach:

📔“Linear least squares solutions by Householder transformations” by Businger
and Golub, Numerische Mathematik.

📔“Note on the iterative refinement of least squares solution” by Golub and
Wilkinson, 1966, Numerische Mathematik.

ä Normal equation approach:

📔“Note on the iterative refinement of least squares solution” by Golub and
Wilkinson, 1966, Numerische Mathematik.
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Least squares problem: minx ‖b − Ax‖2

(1) Computing the residual:
[
hi
gi

]
=

[
b − ri − Axi

−AT ri

]
(extra)

(2) Solving the correction equation:
[

I A
AT 0

] [
di,1
di,2

]
=

[
hi
gi

]
(working)

(3) Updating the solution:
[

ri+1
xi+1

]
=

[
ri
xi

]
+

[
di,1
di,2

]
. (working)

ä Augmented system approach:

📔“Iterative refinement of linear least squares solutions I” by Björck, 1967,
BIT.

📔“On the Iterative Refinement of Least Squares Solutions” by Fletcher,
1975, Journal of the American Statistical Association.
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Section 5

From the 70s to the 2000s



Hardware and software changes

(1) Computing the residual: ri = b − Axi

(extra)

(2) Solving the correction equation: Adi = ri

(working)

(3) Updating the solution: xi+1 = xi + di .

(working)

Hardware and software changes reshaped the way we use iterative refine-
ment:

ä Accumulation of the inner products in extra precision was not
widely available across machines anymore.
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Hardware and software changes

(1) Computing the residual: ri = b − Axi

(extra)

(2) Solving the correction equation: Adi = ri

(working)

(3) Updating the solution: xi+1 = xi + di .

(working)

Hardware and software changes reshaped the way we use iterative refine-
ment:

ä Accumulation of the inner products in extra precision was not
widely available across machines anymore.

“The primary drawback of mixed precision iterative improvement
is that its implementation is somewhat machine-dependent.
This discourages its use in software that is intended for wide
distribution.” Golub and van Loan, 1996.

COMMENT-ALTCOMMENT-ALT
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Hardware and software changes

(1) Computing the residual: ri = b − Axi

(extra)

(2) Solving the correction equation: Adi = ri

(working)

(3) Updating the solution: xi+1 = xi + di .

(working)

Hardware and software changes reshaped the way we use iterative refine-
ment:

ä Double precision circuitry was optimized and not much slower
than single precision. Data transfer was fast and not a concern. ⇒
Single not faster than double precision.

“In the past, [...] the load was on the floating point processing units
rather than the memory subsystem, and so the single precision data
motion advantages were for the most part irrelevant.” Buttari et
al., 2007.

COMMENT-ALTCOMMENT-ALT
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Hardware and software changes

(1) Computing the residual: ri = b − Axi

(extra)

(2) Solving the correction equation: Adi = ri

(working)

(3) Updating the solution: xi+1 = xi + di .

(working)

Hardware and software changes reshaped the way we use iterative refine-
ment:

ä Iterative methods (CG, GMRES, LSQR, etc.) were on the rise,
and unstable direct methods were more and more considered to
target parallel computing and sparse data structures.

“[...] the increased need for solving very large linear systems
triggered a noticeable and rapid shift toward iterative techniques
in many applications. This trend can be traced back to the 1960s
and 1970s [...]” Saad, 2000.

COMMENT-ALTCOMMENT-ALT
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Hardware and software changes

(1) Computing the residual: ri = b − Axi (working)
(2) Solving the correction equation: Adi = ri (working)
(3) Updating the solution: xi+1 = xi + di . (working)

Hardware and software changes reshaped the way we use iterative refine-
ment:

⇒ A new form of IR emerged where every operations are run in
the same precision: fixed precision iterative refinement!
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Why is it relevant?

(1) Computing the residual: ri = b − Axi (working)
(2) Solving the correction equation: Adi = ri (working)
(3) Updating the solution: xi+1 = xi + di . (working)

Common thought was that fixed precision iterative refinement is useless!

“In this case, xm is often no more accurate than x1.” Moler, 1967.
COMMENT-ALTCOMMENT-ALT
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(1) Computing the residual: ri = b − Axi (working)
(2) Solving the correction equation: Adi = ri (working)
(3) Updating the solution: xi+1 = xi + di . (working)

Common thought was that fixed precision iterative refinement is useless!

“In this case, xm is often no more accurate than x1.” Moler, 1967.
COMMENT-ALTCOMMENT-ALT

As the context has changed, this idea has been challenged by
📔“Iterative refinement implies numerical stability” by Jankowski and Woźniakowski,
1977.
📔“Iterative refinement implies numerical stability for gaussian elimination” by Skeel,
1980.
They showed that while fixed precision iterative refinement cannot correct
(much) stable solvers, it can transform an unstable solver into a stable
one.
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Widen the range of solvers

(1) Computing the residual: ri = b − Axi (working)
(2) Solving the correction equation: Adi = ri (working)
(3) Updating the solution: xi+1 = xi + di . (working)

From the 40s to the 70s, stable direct solvers were the standard. BUT
from the 70s to the 2000s, a wider variety of linear solvers emerged.
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(1) Computing the residual: ri = b − Axi (working)
(2) Solving the correction equation: Adi = ri (working)
(3) Updating the solution: xi+1 = xi + di . (working)

From the 40s to the 70s, stable direct solvers were the standard. BUT
from the 70s to the 2000s, a wider variety of linear solvers emerged.
⇒ Any kind of linear solver can solve the correction equation Adi =
ri !
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Widen the range of solvers

(1) Computing the residual: ri = b − Axi (working)
(2) Solving the correction equation: Adi = ri (working)
(3) Updating the solution: xi+1 = xi + di . (working)

From the 40s to the 70s, stable direct solvers were the standard. BUT
from the 70s to the 2000s, a wider variety of linear solvers emerged.
⇒ Any kind of linear solver can solve the correction equation Adi =
ri !

With Chebyshev iterations:
📔“Iterative refinement implies numerical stability” by Jankowski and Woźniakowski,
1977.
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Widen the range of solvers

(1) Computing the residual: ri = b − Axi (working)
(2) Solving the correction equation: Adi = ri (working)
(3) Updating the solution: xi+1 = xi + di . (working)

From the 40s to the 70s, stable direct solvers were the standard. BUT
from the 70s to the 2000s, a wider variety of linear solvers emerged.
⇒ Any kind of linear solver can solve the correction equation Adi =
ri !

With GMRES:
📔“Efficient High Accuracy Solutions with GMRES(m)” by Turner and Walker, 1992.
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Widen the range of solvers

(1) Computing the residual: ri = b − Axi (working)
(2) Solving the correction equation: Adi = ri (working)
(3) Updating the solution: xi+1 = xi + di . (working)

From the 40s to the 70s, stable direct solvers were the standard. BUT
from the 70s to the 2000s, a wider variety of linear solvers emerged.
⇒ Any kind of linear solver can solve the correction equation Adi =
ri !

With LU and drop strategies:
📔“Use of Iterative Refinement in the Solution of Sparse Linear Systems” by Zlatev,
1982, SIAM Journal on Numerical Analysis.
📔“Solving Sparse Linear Systems with Sparse Backward Error” by Arioli et al., 1989,
SIAM Journal on Matrix Analysis and Applications.
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Widen the range of solvers

(1) Computing the residual: ri = b − Axi (working)
(2) Solving the correction equation: Adi = ri (working)
(3) Updating the solution: xi+1 = xi + di . (working)

From the 40s to the 70s, stable direct solvers were the standard. BUT
from the 70s to the 2000s, a wider variety of linear solvers emerged.
⇒ Any kind of linear solver can solve the correction equation Adi =
ri !

With LU and static pivoting:
📔“Making Sparse Gaussian Elimination Scalable by Static Pivoting” by Li and Dem-
mel, 1998.
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Widen the range of solvers

(1) Computing the residual: ri = b − Axi (working)
(2) Solving the correction equation: Adi = ri (working)
(3) Updating the solution: xi+1 = xi + di . (working)

From the 40s to the 70s, stable direct solvers were the standard. BUT
from the 70s to the 2000s, a wider variety of linear solvers emerged.
⇒ Any kind of linear solver can solve the correction equation Adi =
ri !

Without numerical pivoting:
📔“On the Stability of Cholesky Factorization for Symmetric Quasidefinite Systems” by
Gill et al., 1996, SIAM Journal on Matrix Analysis and Applications.
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A software standard

(1) Computing the residual: ri = b − Axi (working)
(2) Solving the correction equation: Adi = ri (working)
(3) Updating the solution: xi+1 = xi + di . (working)

Fixed precision iterative refinement is embedded in many major soft-
ware:

ä Dense linear system: Lapack (with routines whose names end in
-rfs and called by the expert drivers whose names end in -svx).

ä Sparse linear system: MUMPS, PaStiX, or SuperLU.

📔“Analysis and comparison of two general sparse solvers for distributed mem-
ory computers” by Amestoy et al., 2001, ACM Transactions on Mathematical
Software.
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Other applications

(1) Computing the residual: ri = b − Axi (working)
(2) Solving the correction equation: Adi = ri (working)
(3) Updating the solution: xi+1 = xi + di . (working)

ä For computation of eigenpairs:
📔“Improving the Accuracy of Computed Eigenvalues and Eigenvectors” by Don-
garra et al., 1983, SIAM Journal on Numerical Analysis.

ä In block elimination methods:
📔“Block elimination with one refinement solves bordered linear systems accu-
rately” by Govaerts and Pryce, 1990, BIT.

ä For fault-tolerant computing:
📔“Floating point fault tolerance with backward error assertions” by Boley et al.,
1995, IEEE Transactions on Computers.

ä For Vandermonde-like systems:
📔“Fast Solution of Vandermonde-Like Systems Involving Orthogonal Polynomi-
als” by Higham, 1988, IMA Journal of Numerical Analysis.
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Other applications

(1) Computing the residual: ri = b − Axi (working)
(2) Solving the correction equation: Adi = ri (working)
(3) Updating the solution: xi+1 = xi + di . (working)

ä For computation of eigenpairs:
📔“Improving the Accuracy of Computed Eigenvalues and Eigenvectors” by Don-
garra et al., 1983, SIAM Journal on Numerical Analysis.

ä In block elimination methods:
📔“Block elimination with one refinement solves bordered linear systems accu-
rately” by Govaerts and Pryce, 1990, BIT.

ä For fault-tolerant computing:
📔“Floating point fault tolerance with backward error assertions” by Boley et al.,
1995, IEEE Transactions on Computers.

ä For Vandermonde-like systems:
📔“Fast Solution of Vandermonde-Like Systems Involving Orthogonal Polynomi-
als” by Higham, 1988, IMA Journal of Numerical Analysis.
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(Too) Early (Too) pioneering studies

(1) Computing the residual: ri = b − Axi (???)

mmc

(2) Solving the correction equation: Adi = ri (low)
(3) Updating the solution: xi+1 = xi + di . (???)

Often forgotten, these work were the first to solve the correction equation
in lower precision!

📔“Iterative refinement for linear systems in variable-precision arithmetic” by Kiełbasiński,
1981, BIT.
📔“Fast Hybrid Solution of Algebraic Systems” by Douglas et al., 1990, SIAM Journal
on Scientific and Statistical Computing.
📔“Efficient High Accuracy Solutions with GMRES(m)” by Turner and Walker, 1992,
SIAM Journal on Scientific and Statistical Computing.

This approach will become very important...
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Section 6

From the 2000s to the 2010s



The advent of low precision

(1) Computing the residual: ri = b − Axi

(extra)

(2) Solving the correction equation: Adi = ri

(working)

(3) Updating the solution: xi+1 = xi + di .

(working)

From the 2000s, single precision became effectively 2× faster in hardware
than double precision. This major hardware change will start the advent
of low precision!

PROBLEM:

“[...] the advantages of single precision performance in scientific
computing did not come to fruition until recently, due to the fact
that most scientific computing problems require double precision
accuracy.” Buttari et al., 2007.

COMMENT-ALTCOMMENT-ALT
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The advent of low precision

(1) Computing the residual: ri = b − Axi

(extra)

(2) Solving the correction equation: Adi = ri

(working)

(3) Updating the solution: xi+1 = xi + di .

(working)

From the 2000s, single precision became effectively 2× faster in hardware
than double precision. This major hardware change will start the advent
of low precision!

SOLUTION: Iterative refinement to leverage the power of single precision
while delivering double precision accuracy!
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Get back the accuracy

(1) Computing the residual: ri = b − Axi (working)
(2) Solving the correction equation: di = U\L\ri (low)
(3) Updating the solution: xi+1 = xi + di . (working)

Compute the factorization (O(n3)) in single precision, and compute the
residual and update (O(n2)) in double precision to improve the accuracy
of the solution.

As the refinement steps are asymptotically negligible, we can solve Ax =
b twice faster while providing double precision accuracy.
📔“Exploiting the performance of 32 bit floating point arithmetic in obtaining 64 bit
accuracy (revisiting iterative refinement for linear systems)” by Langou et al., 2006.

⇒ Iterative refinement is used for performance!
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The irruption of accelerators

(1) Computing the residual: ri = b − Axi (working)
(2) Solving the correction equation: Adi = ri (low)
(3) Updating the solution: xi+1 = xi + di . (working)

In the 2000s, accelerators1 were more and more considered in linear algebra
computations.

1Specialized hardware made to perform specific tasks more efficiently than if it was
run on general-purpose CPUs.
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The irruption of accelerators

(1) Computing the residual: ri = b − Axi (working)
(2) Solving the correction equation: Adi = ri (low)
(3) Updating the solution: xi+1 = xi + di . (working)

In the 2000s, accelerators1 were more and more considered in linear algebra
computations.

ä Iterative refinement with
FPGA (Field-Programmable
Gate Array).
📔“High-Performance Mixed-
Precision Linear Solver for FPGAs” by
Sun et al., 2008.

Spartan FPGA from Xilinx
1Specialized hardware made to perform specific tasks more efficiently than if it was

run on general-purpose CPUs.
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The irruption of accelerators

(1) Computing the residual: ri = b − Axi (working)
(2) Solving the correction equation: Adi = ri (low)
(3) Updating the solution: xi+1 = xi + di . (working)

In the 2000s, accelerators1 were more and more considered in linear algebra
computations.

ä Iterative refinement with
GPU (Graphics Processing
Unit).
📔“Accelerating double precision fem
simulations with gpus” by Göddeke et
al., 2005. Nvidia Geforce RTX 3090

1Specialized hardware made to perform specific tasks more efficiently than if it was
run on general-purpose CPUs.
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Examples of application

(1) Computing the residual: ri = b − Axi (working)
(2) Solving the correction equation: Adi = ri (low)
(3) Updating the solution: xi+1 = xi + di . (working)

ä Accelerate direct solvers:
📔“Exploiting fast hardware floating point in high precision computation” by Ged-
des and Zheng, 2003, ISSAC ’03.
📔“Using Mixed Precision for Sparse Matrix Computations to Enhance the Per-
formance while Achieving 64-bit Accuracy” by Buttari et al., 2008, ACM TOMS.

ä Accelerate iterative solvers:
📔“Mixed Precision Iterative Refinement Methods for Linear Systems: Conver-
gence Analysis Based on Krylov Subspace Methods.” by Anzt et al., 2012.

ä Accelerate multigrid solvers:
📔“Performance and accuracy of hardware-oriented native-, emulated- and mixed-
precision solvers in FEM simulations” by Göddeke et al., 2007, International
Journal of Parallel, Emergent and Distributed Systems.
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The comeback of extra precision

(1) Computing the residual: ri = b − Axi (extra)
(2) Solving the correction equation: Adi = ri (working)
(3) Updating the solution: xi+1 = xi + di . (working)

Extra precision iterative refinement was disregarded due to the lack of
portability of extra precision from hardware to hardware.
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The comeback of extra precision

(1) Computing the residual: ri = b − Axi (extra)
(2) Solving the correction equation: Adi = ri (working)
(3) Updating the solution: xi+1 = xi + di . (working)

Extra precision iterative refinement was disregarded due to the lack of
portability of extra precision from hardware to hardware.

HOWEVER, major software evolutions in the 2000s made extra precision
accessible and portable again: XBLAS standard, double-double arith-
metic, Quad-Precision Math Library (GNU), or Intel compilers support
for fp128.

“However, with the release of the Extended and Mixed Precision
BLAS (see §27.1O) and the portable reference implementation for
IEEE arithmetic, [...] portable mixed precision iterative refinement
is now achievable” Higham, 2002.

COMMENT-ALTCOMMENT-ALT

Bastien Vieublé Beyond iterative refinement 09/02/2026 28 / 56



The comeback of extra precision

(1) Computing the residual: ri = b − Axi (extra)
(2) Solving the correction equation: Adi = ri (working)
(3) Updating the solution: xi+1 = xi + di . (working)

Extra precision iterative refinement was disregarded due to the lack of
portability of extra precision from hardware to hardware.

HOWEVER, major software evolutions in the 2000s made extra precision
accessible and portable again: XBLAS standard, double-double arith-
metic, Quad-Precision Math Library (GNU), or Intel compilers support
for fp128.
📔“Error bounds from extra-precise iterative refinement” by Demmel et al., 2006, ACM
TOMS.
📔“Newton’s Method in Floating Point Arithmetic and Iterative Refinement of Gener-
alized Eigenvalue Problems” by Tisseur, 2001, SIAM Journal on Matrix Analysis and
Applications.
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Section 7

From the mid 2010s to now



The rise of half precision(s)

(1) Computing the residual: ri = b − Axi

(extra)

(2) Solving the correction equation: Adi = ri

(working)

(3) Updating the solution: xi+1 = xi + di .

(working)

From the 2010s, the increasing availability of half precision arithmetics
motivated by deep learning fed the need for mixed precision algorithms:

“However, today’s dominant market is AI, which does not require
the high-precision arithmetic long common in computational
modeling and is leading the design of chips with lower-precision
arithmetic [...]” Deelman et al., 2025.

COMMENT-ALTCOMMENT-ALT
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The rise of half precision(s)

(1) Computing the residual: ri = b − Axi

(extra)

(2) Solving the correction equation: Adi = ri

(working)

(3) Updating the solution: xi+1 = xi + di .

(working)

From the 2010s, the increasing availability of half precision arithmetics
motivated by deep learning fed the need for mixed precision algorithms:

ä We can generally access at least four different arithmetics on
modern supercomputers: fp16, fp32, fp64, fp128 (say).
⇒ Optimizing the computer performance pass by exploiting

and combining efficiently each of these arithmetics!
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The rise of half precision(s)

(1) Computing the residual: ri = b − Axi

(extra)

(2) Solving the correction equation: Adi = ri

(working)

(3) Updating the solution: xi+1 = xi + di .

(working)

From the 2010s, the increasing availability of half precision arithmetics
motivated by deep learning fed the need for mixed precision algorithms:

ä We can generally access at least four different arithmetics on
modern supercomputers: fp16, fp32, fp64, fp128 (say).
⇒ Optimizing the computer performance pass by exploiting

and combining efficiently each of these arithmetics!
ä While many scientific computing applications can handle single
precision accuracy, a full half precision solution is not enough!

⇒ Half precision cannot be used alone!
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The rise of half precision(s)

(1) Computing the residual: ri = b − Axi

(extra)

(2) Solving the correction equation: Adi = ri

(working)

(3) Updating the solution: xi+1 = xi + di .

(working)

From the 2010s, the increasing availability of half precision arithmetics
motivated by deep learning fed the need for mixed precision algorithms:

ä We can generally access at least four different arithmetics on
modern supercomputers: fp16, fp32, fp64, fp128 (say).
⇒ Optimizing the computer performance pass by exploiting

and combining efficiently each of these arithmetics!
ä While many scientific computing applications can handle single
precision accuracy, a full half precision solution is not enough!

⇒ Half precision cannot be used alone!

⇒ Interest over mixed precision algorithms skyrocketed!
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Towards more versatility

(1) Computing the residual: ri = b − Axi (extra)
(2) Solving the correction equation: Adi = ri (working)
(3) Updating the solution: xi+1 = xi + di . (working)

Review of the past iterative refinement uses:
ä Extra precision on the residual for a better accuracy.
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Towards more versatility

(1) Computing the residual: ri = b − Axi (working)
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ment, it is possible to accelerate the solution process and to obtain
more accurate results for a wider class of problems.” Carson and
Higham, 2018.
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📔“A New Analysis of Iterative Refinement and Its Application to Accurate Solution of
Ill-Conditioned Sparse Linear Systems” by Carson and Higham, 2017.
📔“Accelerating the Solution of Linear Systems by Iterative Refinement in Three Preci-
sions” by Carson and Higham, 2018.
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Already ubiquitous in our software

(1) Computing the residual: ri = b − Axi (extra)
(2) Solving the correction equation: Adi = ri (low)
(3) Updating the solution: xi+1 = xi + di . (working)

ä Is used in the HPL-MxP benchmark (2025):
📔“Harnessing GPU Tensor Cores for Fast FP16 Arithmetic to Speed up Mixed-
Precision Iterative Refinement Solvers” by Haidar at al., 2018.

Rank Computer name Eflop/s

1 El Capitan 16.680
2 Aurora 11.643
3 Frontier 11.390

ä Is used with the MUMPS sparse direct solver:
📔“Combining sparse approximate factorization with mixed precision iterative re-
finement” by Amestoy et al., 2023, ACM TOMS.

ä Available in the MAGMA, NVIDIA cuSolver, or SLATE libraries.
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Still an ongoing topic!

📔“Improving the Performance of the GMRES Method Using Mixed-Precision Tech-
niques” by Lindquist at al., 2020.
📔“Accelerating Geometric Multigrid Preconditioning with Half-Precision Arithmetic on
GPUs” by Oo and Vogel, 2020.
📔“Exploiting lower precision arithmetic in solving symmetric positive definite linear
systems and least squares problems.” by Higham and Pranesh, 2021.
📔“Mixed Precision GMRES-based Iterative Refinement with Recycling” by Oktay and
Carson, 2022.
📔“A modular framework for the backward error analysis of GMRES” by Buttari et al.,
2025.
📔“A comparison of mixed precision iterative refinement approaches for least-squares
problems” by Carson and Daužickaitė, 2025.
📔“AIR: Iterative refinement acceleration using arbitrary dynamic precision” by Lee et
al., 2020.
📔“Mixed precision iterative refinement for least squares with linear equality constraints
and generalized least squares problems” by Gao et al., 2024.
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History summary

Extra precision Fixed precision Low precision

Better accuracy
Extra precision

for the computation
of the residual.

Recover stability
Residual, correction

equation, and update,
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in working precision.

Get performance
Solver run

in low precision
for the correction

equation.

All in one
Extra precision
on the residual
and low on the

solver.

1948
First

appearance.

1963
First analysis.

1977
Analysis in

fixed precision.

2006
Low precision
factorization.

2018
Generalized

analysis.

1950 1960 1970 1980 1990 2000 2010 2020

📔“Mixed precision iterative refinement for the solution of large sparse linear systems”
by Vieublé, 2022.
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Section 8

Mixed Precision Alternating-Direction Implicit
Methods



Background on ADI methods

ä Alternating-Direction Implicit (ADI) methods are iterative solvers
for Ax = b coming from PDEs.

ä They split the operator spatially. E.g., they solve a 2D linear system
by reducing the problem to solving a sequence of 1D simpler linear
systems.

ä They belong to the class of matrix splitting stationary iterative
methods (e.g., Jacobi, SOR, Gauss-Seidel).

ä We consider a more general case where the operators are not nec-
essarily obtained from spatial splitting.
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GADI: General Alternating-Direction Implicit Framework

GADI iteration
Consider solving iteratively

Ax = b

Given a splitting A = M + N, parameters α > 0 and ω ∈ [0, 2), a GADI
iteration is

(αI + M)xk+1/2 = (αI − N)xk + b,

(αI + N)xk+1 =
(
N − (1 − ω)αI

)
xk + (2 − ω)αxk+1/2.

Covers various ADI methods: Peaceman-Rachford, Douglas-Rachford,
Normal/skew-Hermitian splitting, Hermitian/skew-Hermitian splitting for
Sylvester and Lyapunov equations.
📔“A General Alternating-Direction Implicit Framework with Gaussian Process Regres-
sion Parameter Prediction for Large Sparse Linear Systems” by Jiang et al., 2022.
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GADI as a stationary iterative method

A GADI iteration can be rewritten as

xk+1 = T (α, ω)xk + G(α, ω),

with

T (α, ω) = (αI + N)−1(αI + M)−1(α2I + MN − (1 − ω)αA),
G(α, ω) = (2 − ω)α(αI + N)−1(αI + M)−1b.

Proposition
The asymptotic convergence rate of GADI is governed by ρ(T (α, ω)).
Additionally, under good condition on the splitting M + N, we guarantee
ρ(T (α, ω)) < 1 for all α > 0 and ω ∈ [0, 2).
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GADI in residual form and iterative refinement

Algorithm: GADI in residual form
1: while not converged do
2: Compute the residual rk = b − Axk .
3: Solve (αI + M)zk = rk .
4: Solve (αI + N)dk = (2 − ω)αzk .
5: Compute the next iterate xk+1 = xk + dk .
6: end while
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Rounding error analysis of mixed precision GADI
Assume the linear solvers are backward stable:

(αI + M + ∆M)ẑk = r̂k , ‖∆M‖ ≤ c(n)us‖αI + M‖,

(αI + N + ∆N)d̂k = (2 − ω)αẑk , ‖∆N‖ ≤ c(n)us‖αI + N‖.

Theorem
For all GADI iteration k ≥ 1, the computed iterate x̂k+1 satisfies

‖x − x̂k+1‖ ≤ β‖x − x̂k‖ + ζ‖x‖,

with

β ≈ ‖T (α, ω)(x − x̂k)‖
‖x − x̂k‖

+ c(n)κ(αI + M)κ(αI + N)us
2,

ζ ≈ c(n)(u + κ(A)ur ).

2Simplified expression using other assumptions listed in the preprint.
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Comparison to previous analysis

Other mixed precision ADI: 📔“Towards a mixed-precision ADI method for Lya-
punov equations” by Schulze and Saak, 2025.

Comparison to iterative refinement: 📔“Accelerating the Solution of Linear Sys-
tems by Iterative Refinement in Three Precisions” by Carson and Higham, 2018.

= We solve the GADI subsytems inaccurately while still computing a
highly accurate solution.
6= Strong incentive to use very low precision us since having

κ(αI + M)κ(αI + N)us � ‖T (α, ω)(x − x̂k)‖
‖x − x̂k‖

k→∞−−−→ ρ(T (α, ω))

is numerically useless.

Comparison to stationary iterations: 📔“On the Numerical Behavior of Matrix
Splitting Iteration Methods for Solving Linear Systems” by Bai and Rozložník, 2015.
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Gaussian Process Regression (GPR) to predict α

Issue: The GADI number of iterations is highly sensitive to the choice of
α. Best choice of α depends non-linearly on the precisions u, ur , and us
and the dimension n.

100 102 104 106 108
0.95

1.0

1.05

n

α

Solution: GPR prediction
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GADI implementation details

ä For all problems, we use the HSS splitting:

H = αI + A + AT

2 , S = αI + A − AT

2 .

ä We solve the shifted symmetric and skew-symmetric systems with CG
in FP64, FP32, or BF16. The rest of the operations are in FP64.

ä We use cuBLAS and cuSPARSE for the implementations.
ä With BF16, the matrices and vectors are stored in BF16 but ac-

cumulated in FP32 within the chip → This benefits memory-bound
operations.

ä We form and store persistently: A, H, S, and αI − N.
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Other implementation details

ä Direct solver baseline: We compare against the NVIDIA’s cuDSS
sparse direct solver in FP64 or FP32.

ä Iterative solver baseline: We compare against mixed precision GMRES-
based iterative refinement; GMRES iterations are applied in FP32.
📔“Accelerating Restarted GMRES With Mixed Precision Arithmetic” by Lindquist
et al., 2022.

ä We do not account for the overhead of the GPR dataset generation
and training.

ä NVIDIA A100 80GiB SXM GPU.
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Summary

Algs. us u ur

GADI-FP64 FP64 FP64 FP64
GADI-FP32 FP32 FP64 FP64
GADI-BF16 BF16 FP64 FP64

GMRES-FP32 FP32 FP64 FP64
cuDSS FP64 or FP32

Bastien Vieublé Beyond iterative refinement 09/02/2026 43 / 56



Performance analysis on GPU

2D Convection-Diffusion-Reaction Equation;
‖b − Ax̂k‖2/‖r0‖2 ≤ 10−10; n = n2

g .

Grid
Size
ng

Runtime Performance (seconds)

GADI GMRES CUDSS

FP64 FP32 BF16 FP32 FP64

960 4.9 5.1 3.6 3.3 4.3
2560 44.3 31.5 19.9 23.7 35.5
4096 121.0 84.0 58.6 76.9 97.1
8192 768.1 444.6 307.2 547.3 436.1
10000 1373.0 779.2 529.5 973.8 —
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Performance analysis on GPU

106 5 × 106 107 5 × 107 108
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2D Convection-Diffusion-Reaction Equation
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Performance analysis on GPU

3D Convection-Diffusion Equation;
‖b − Ax̂k‖2/‖r0‖2 ≤ 10−6; n = n3

g .

Grid
Size
ng

Runtime Performance (seconds)

GADI GMRES CUDSS

FP64 FP32 BF16 FP32 FP32

180 3.9 2.4 2.8 3.7 —
256 12.2 7.3 8.9 15.8 —
320 25.7 15.3 18.4 41.5 —
360 40.2 23.9 26.4 58.8 —
400 62.7 36.9 50.3 107.8 —
450 101.1 60.6 137.3 199.9 —
512 — — 390.7 328.3 —
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Performance analysis on GPU

Complex Reaction-Diffusion Equation;
‖b − Ax̂k‖2/‖r0‖2 ≤ 10−6; n = 2n2

g .

Grid
Size
ng

Runtime Performance (seconds)

GADI GMRES CUDSS

FP64 FP32 BF16 FP32 FP32

1024 6.2 4.0 2.4 5.1 13.7
2048 21.8 13.1 8.1 17.5 56.9
4096 79.6 46.5 27.7 59.2 257.1
5120 121.7 72.4 40.2 90.4 402.9
8192 309.0 180.2 98.7 225.6 —
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Section 9

Why you should use Flexible GMRES instead of
iterative refinement



What is GMRES?

Consider the Generalized Minimal
RESidual (GMRES) algorithm.

ä GMRES = Krylov-based iterative
solver for the solution of general
square linear systems Ax = b.

ä Computes iteratively an
orthonormal Krylov basis Vk through
an Arnoldi process.

ä Chooses the vector xk in span{Vk}
that minimizes ‖Axk − b‖.

ä Reiterate until xk is a satisfactory
approximant of x .

Algorithm: GMRES(A, b, x0, τ)
Require: A ∈ Rn×n, b, x0 ∈ Rn, τ ∈ R

1: r0 = b − Ax0
2: β = ‖r0‖, v1 = r0/β, k = 1
3: repeat
4: wk = Avk
5: for i = 1, . . . , k do
6: hi,k = vT

i wk
7: wk = wk − hi,kvi
8: end for
9: hk+1,k = ‖wk‖, vk+1 = wk/hk+1,k

10: Vk = [v1, . . . , vk ]
11: Hk = {hi,j}1≤i≤j+1;1≤j≤k
12: yk = argminy ‖βe1 − Hky‖
13: k = k + 1
14: until ‖βe1 − Hkyk‖ ≤ τ
15: xk = x0 + Vkyk
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Preconditioned GMRES as a refinement

Preconditioner are ubiquitous to accelerate Krylov-based iterative solvers.
Here are three ways to preconditioned GMRES with a preconditioner M:

ä Left-preconditioning (LGMRES):
M−1Ax = M−1b.

ä Right-preconditioning (RGMRES):
AM−1u = b, x = M−1u.

ä Flexible-preconditioning (FGMRES): A variant of RGMRES stor-
ing an additional basis and allowing the preconditioner M(k) to vary
from an iteration to another.

Bastien Vieublé Beyond iterative refinement 09/02/2026 46 / 56



Preconditioned GMRES as a refinement

Preconditioner are ubiquitous to accelerate Krylov-based iterative solvers.
Here are three ways to preconditioned GMRES with a preconditioner M:

ä Left-preconditioning (LGMRES):
M−1Ax = M−1b.

ä Right-preconditioning (RGMRES):
AM−1u = b, x = M−1u.

ä Flexible-preconditioning (FGMRES): A variant of RGMRES stor-
ing an additional basis and allowing the preconditioner M(k) to vary
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⇒ GMRES can also refine an inaccurate linear solver by using it as
a preconditioner.
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Which is the better refinement?

Consider an inaccurate solver that act as a constant operator M−1 and that can
be refined by both iterative refinement and GMRES.

⇒Can we say something about which is faster?

What we know from the literature:

ä Experimental observation that FGMRES needs less iterations:
📔“Using FGMRES to obtain backward stability in mixed precision” by Arioli and
Duff, 2008.

ä Inner-outer FGMRES-GMRES can be expected faster than restarted GM-
RES:
📔“Flexible Inner-Outer Krylov Subspace Methods” by Simoncini and Szyld,
2002.

ä Stationary iterative methods converge slower than Krylov subspace methods:
📔“An Introduction to Domain Decomposition Meth- ods: Algorithms, Theory,
and Parallel Implementation” by Dolean et al., Chap. 3, 2015.
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A misleading argument

ä Iterative refinement is a stationary iteration:

xk+1 = xk + M−1(b − Axk).

ä Taking x0 = 0, the kth iterative refinement iterate satisfies

xk ∈ Kk(M−1A, M−1b)
∈ span{M−1b, (M−1A)(M−1b), . . . , (M−1A)k−1(M−1b)}.

ä On the other hand, LGMRES looks at each iteration for an optimal
iterate xk in the same space Kk(M−1A, M−1b):

min
xk∈Kk(M−1A,M−1b)

‖M−1b − M−1Axk‖

⇒ We should expect LGMRES (and RGMRES/FGMRES) to
converge faster than iterative refinement.
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A counterexample

1138_bus; single precision LU solver.
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ir; fgmres; rgmres; lgmres

Why: Attainable accuracies of LGMRES and RGMRES are sensitive to the
accuracy at which M−1 is applied.

📔“Mixed precision strategies for preconditioned GMRES: a comprehensive analysis” by
Buttari et al., 2025.
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About comparing FGMRES and iterative refinement

Can we guarantee that FGMRES always refine faster than iterative
refinement?

Sharp convergence rate for GMRES in the general case is an ongoing
difficult problem:
📔“Any nonincreasing convergence curve is possible for GMRES” by Greenbaum et
al., 1996.
📔“Any nonincreasing convergence curves are simultaneously possible for GMRES and
weighted GMRES, as well as for left and right preconditioned GMRES” by Matalon and
Spillane, 2025.
📔“GMRES convergence bounds that depend on the right-hand-side vector” by Titley-
Peloquin et al., 2013.
BUT we have strong assumptions on the preconditioner/inaccurate solver:

d̂k − dk = usEkdk , us‖Ek‖ ≤ 1.
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Studying the convergence with a proxy algorithm
The (k + 1)th iterate of iterative refinement satisfies:

xk+1 = x1 + d1 + d2 + · · · + dk ,
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with yk = [α(k)
1 , . . . , α

(k)
k ]T = [1, . . . , 1]T .
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Algorithm: Optimalized iterative refinement
1: while not converged do
2: Compute the residual rk = b − Axk .
3: Solve Adk = rk and store Dk = [Dk−1, dk ].
4: Compute the next iterate xk+1 = xk + Dkyk where yk =

argminy ‖r1 − ADky‖.
5: end while
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Convergence analysis

Theorem
The ratio between the (backward error) convergence rates of optimal
iterative refinement and iterative refinement for all iteration k ≥ 1 is

‖(I − QkQT
k )(Ad̂k − r̂k)‖

‖Ad̂k − r̂k‖
≤ 1,

where (I − QkQT
k ) is an orthogonal projection on the complement of

span{A[d̂1, . . . , d̂k ]}.

Equivalently, and under our assumptions on the solver, we write

(I − QkQT
k )(Ad̂k − r̂k) = (I − QkQT

k )A(d̂k − dk) = us(I − QkQT
k )AEkdk .

⇒ The more span{d̂1, . . . , d̂k} spans Ekdk , the faster is optimal
iterative refinement over iterative refinement.
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The link to FGMRES
Algorithm: Optimal IR as Flexible Simpler GMRES

1: Initialize x1.
2: r1 = b − Ax1
3: repeat
4: Solve Adi = ri/‖ri‖ and form Di = [Di−1, di ]
5: wi = Adi
6: for l = 1 : i − 1 do
7: hl,i = vT

l wi
8: wi = wi − hl,ivl
9: end for

10: hi,i = ‖wi‖2
11: Compute vi = wi/hi,i and store Vi = [Vi−1, vi ].
12: Compute ri+1 = ri − βivi , where βi = rT

i vi and bi = [bi−1, βi ].
13: until convergence
14: Solve the triangular system Hiti = bi .
15: xi = x1 + Diti
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Numerical experiments

Number of refinement iterations; LU factors in BFloat16; n ≤ 1000;
‖x − x̂k‖/‖x‖ ≤ 10−14.

Matrix IR Simpler FGMRES FGMRES

pores_1 25 21 19
fs_680_1 18 11 11
cz148 32 15 15
ck104 32 20 20
cz308 117 19 22
fs_680_3 33 17 17
Si2 51 19 19
LFAT5 28 12 12
tub100 73 31 33
bcsstk34 37 21 21
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The End!
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Any Question?
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