Mixed precision strategies for preconditioned GMRES

Speaker: Bastien Vieublé **Coauthors:** Alfredo Buttari, Xin Liu, Théo Mary April 2025

GAMM 2025

Throughout the presentation, we focus on the Generalized Minimal RESidual (GMRES) algorithm. Algorithm: GMRES(A, b, x_0, τ)

Require: $A \in \mathbb{R}^{n \times n}$, $b, x_0 \in \mathbb{R}^n$, $\tau \in \mathbb{R}$ 1: $r_0 = b - Ax_0$ 2: $\beta = ||r_0||, v_1 = r_0/\beta, k = 1$ 3: repeat 4: $W_b = AV_b$ 5: **for** i = 1, ..., k **do** 6: $h_{i,k} = v_i^T W_k$ 7: $W_k = W_k - h_{i,k} V_i$ 8. end for 9: $h_{k+1,k} = ||w_k||, v_{k+1} = w_k/h_{k+1,k}$ 10: $V_{k} = [v_{1}, \ldots, v_{k}]$ 11: $H_k = \{h_{i,j}\}_{1 \le j \le j+1: 1 \le j \le k}$ 12: $y_k = \operatorname{argmin}_{V} \|\beta e_1 - H_k y\|$ 13: k = k + 114: **until** $\|\beta e_1 - H_b y_b\| < \tau$ 15: $x_{b} = x_{0} + V_{b}V_{b}$

Throughout the presentation, we focus on the Generalized Minimal RESidual (GMRES) algorithm.

► GMRES = Krylov-based iterative solver for the solution of general square linear systems Ax = b. **Algorithm:** GMRES(A, b, x_0, τ) **Require:** $A \in \mathbb{R}^{n \times n}$, $b, x_0 \in \mathbb{R}^n$, $\tau \in \mathbb{R}$ 1: $r_0 = b - Ax_0$ 2: $\beta = ||r_0||, v_1 = r_0/\beta, k = 1$ 3: repeat 4: $W_h = AV_h$ 5: **for** i = 1, ..., k **do** 6: $h_{i,k} = v_i^T W_k$ 7: $W_k = W_k - h_{i,k} v_i$ end for 8. 9: $h_{k+1,k} = ||w_k||, v_{k+1} = w_k/h_{k+1,k}$ 10: $V_{k} = [v_{1}, \ldots, v_{k}]$ 11: $H_k = \{h_{i,j}\}_{1 \le j \le j+1: 1 \le j \le k}$ 12: $y_k = \operatorname{argmin}_{V} \|\beta e_1 - H_k y\|$ 13: k = k + 114: **until** $\|\beta e_1 - H_b y_b\| < \tau$ 15: $x_{b} = x_{0} + V_{b}V_{b}$

Throughout the presentation, we focus on the Generalized Minimal RESidual (GMRES) algorithm.

► GMRES = Krylov-based iterative solver for the solution of general square linear systems Ax = b.

 Computes iteratively an orthonormal Krylov basis V_k through an Arnoldi process. **Algorithm:** GMRES(A, b, x_0, τ)

Require: $A \in \mathbb{R}^{n \times n}$, $b, x_0 \in \mathbb{R}^n$, $\tau \in \mathbb{R}$ 1: $r_0 = b - Ax_0$ 2: $\beta = ||r_0||, v_1 = r_0/\beta, k = 1$ 3: repeat 4: $W_h = AV_h$ 5: **for** i = 1, ..., k **do** 6: $h_{i,k} = v_i^T W_k$ 7: $W_k = W_k - h_{i,k} V_i$ 8. end for 9: $h_{k+1,k} = ||w_k||, v_{k+1} = w_k/h_{k+1,k}$ 10: $V_{k} = [v_{1}, \ldots, v_{k}]$ 11: $H_k = \{h_{i,i}\}_{1 \le i \le j+1; 1 \le j \le k}$ 12: $y_k = \operatorname{argmin}_{V} \|\beta e_1 - H_k y\|$ 13: k = k + 114: **until** $\|\beta e_1 - H_b y_b\| < \tau$ 15: $x_{b} = x_{0} + V_{b}V_{b}$

Throughout the presentation, we focus on the Generalized Minimal RESidual (GMRES) algorithm.

► GMRES = Krylov-based iterative solver for the solution of general square linear systems Ax = b.

 Computes iteratively an orthonormal Krylov basis V_k through an Arnoldi process.

► Chooses the vector x_k in $span\{V_k\}$ that minimizes $||Ax_k - b||$.

Algorithm: GMRES(A, b, x_0, τ)

Require: $A \in \mathbb{R}^{n \times n}$, $b, x_0 \in \mathbb{R}^n$, $\tau \in \mathbb{R}$ 1: $r_0 = b - Ax_0$ 2: $\beta = ||r_0||, v_1 = r_0/\beta, k = 1$ 3: repeat 4: $W_h = AV_h$ 5: **for** i = 1, ..., k **do** 6: $h_{i,k} = v_i^T W_k$ 7: $W_k = W_k - h_{i,k} V_i$ 8. end for 9: $h_{k+1,k} = ||w_k||, v_{k+1} = w_k/h_{k+1,k}$ 10: $V_{k} = [V_{1}, \ldots, V_{k}]$ 11: $H_k = \{h_{i,j}\}_{1 \le j \le j+1: 1 \le j \le k}$ 12: $y_k = \operatorname{argmin}_{V} \|\beta e_1 - H_k y\|$ 13: k = k + 114: **until** $\|\beta e_1 - H_b y_b\| < \tau$ 15: $x_{b} = x_{0} + V_{b}V_{b}$

Throughout the presentation, we focus on the Generalized Minimal RESidual (GMRES) algorithm.

► GMRES = Krylov-based iterative solver for the solution of general square linear systems Ax = b.

 Computes iteratively an orthonormal Krylov basis V_k through an Arnoldi process.

► Chooses the vector x_k in $span\{V_k\}$ that minimizes $||Ax_k - b||$.

Reiterate until x_k is a satisfactory approximant of x.

Algorithm: GMRES(A, b, x_0, τ)

Require: $A \in \mathbb{R}^{n \times n}$, $b, x_0 \in \mathbb{R}^n$, $\tau \in \mathbb{R}$ 1: $r_0 = b - Ax_0$ 2: $\beta = ||r_0||, v_1 = r_0/\beta, k = 1$ 3: repeat 4: $W_h = AV_h$ 5: **for** i = 1, ..., k **do** 6: $h_{i,k} = v_i^T W_k$ 7: $W_k = W_k - h_{i,k} V_i$ end for 8. 9: $h_{k+1,k} = ||w_k||, v_{k+1} = w_k/h_{k+1,k}$ 10: $V_{k} = [V_{1}, \ldots, V_{k}]$ 11: $H_k = \{h_{i,i}\}_{1 \le i \le j+1; 1 \le j \le k}$ 12: $y_k = \operatorname{argmin}_{V} \|\beta e_1 - H_k y\|$ 13: k = k + 114: **until** $\|\beta e_1 - H_b y_b\| < \tau$ 15: $x_{b} = x_{0} + V_{b}V_{b}$

Commonly available floating point arithmetics:

	ID	Signif. bits	Exp. bits	Range	Unit roundoff <i>u</i>
fp128	Q	113	15	10 ^{±4932}	1×10^{-34}
double-fp64	DD	107	11	10 ^{±308}	6×10^{-33}
fp64	D	53	11	10 ^{±308}	1×10^{-16}
fp32	S	24	8	10 ^{±38}	6×10^{-8}
tfloat32	Т	11	8	10 ^{±38}	5×10^{-4}
fp16	Н	11	5	10 ^{±5}	5×10^{-4}
bfloat16	В	8	8	10 ^{±38}	4×10^{-3}
fp8 (E4M3)	R	4	4	10 ^{±2}	6.3×10^{-2}
fp8 (E5M2)	R*	3	5	10 ^{±5}	1.3×10^{-1}

The low precision arithmetics are **less accurate** BUT are **faster**, **consume less memory** and **energy**.

What is preconditioning?

Principle: Transform the original linear system Ax = b into an easier one to solve.

► Left:

$$M^{-1}Ax = M^{-1}b, \qquad \kappa(M^{-1}A) \ll \kappa(A).$$

► Right:

$$AM^{-1}u = b,$$
 $x = M^{-1}u,$ $\kappa(AM^{-1}) \ll \kappa(A).$

> Flexible: A variant of right-preconditioning allowing the preconditioner $M^{(i)}$ to vary from an iteration to another. We will consider $M^{(i)} = M$ in this study.

► Split:

$$M_{L}^{-1}AM_{R}^{-1}u = M_{L}^{-1}b, \qquad x = M_{R}^{-1}u, \qquad \kappa(M_{L}^{-1}AM_{R}^{-1}) \ll \kappa(A).$$

What is preconditioning?

Principle: Transform the original linear system *Ax* = *b* into an easier one to solve.

$$M^{-1}Ax = M^{-1}b, \qquad \kappa(M^{-1}A) \ll \kappa(A).$$

► Right:

$$AM^{-1}u = b,$$
 $x = M^{-1}u,$ $\kappa(AM^{-1}) \ll \kappa(A).$

> Flexible: A variant of right-preconditioning allowing the preconditioner $M^{(i)}$ to vary from an iteration to another. We will consider $M^{(i)} = M$ in this study.

➤ Split:

 $M_L^{-1}AM_R^{-1}u = M_L^{-1}b, \qquad x = M_R^{-1}u, \qquad \kappa(M_L^{-1}AM_R^{-1}) \ll \kappa(A).$

E "The stability of split-preconditioned FGMRES in four precisions" by Erin Carson and Ieva Daužickaitė, 2024, ETNA.

Mixed precision layout for preconditioned GMRES

Algorithm: Left(A, M^{-1}, b, x_0, τ)			
1:	$r_0 = b - Ax_0$		
2:	$s_0 = M^{-1} r_0$		
3:	$\beta = \ s_0\ , v_1 = s_0/\beta, k = 1$		
4:	repeat		
5:	$z_k = Av_k$		
6:	$w_k = M^{-1} z_k$		
7:	for $i = 1,, k$ do		
8:	$h_{i,k} = \mathbf{v}_i^T \mathbf{w}_k$		
9:	$w_k = w_k - h_{i,k} v_i$		
10:	end for		
11:	$h_{k+1,k} = w_k , v_{k+1} = w_k/h_{k+1,k}$		
12:	$V_k = [v_1, \ldots, v_k]$		
13:	$H_k = \{h_{i,j}\}_{1 \le i \le j+1; 1 \le j \le k}$		
14:	$y_k = \operatorname{argmin}_{V} \ \beta e_1 - H_k Y\ $		
15:	k = k + 1		
16:	$until \ \beta e_1 - H_k y_k\ \le \tau$		
17:			
18:	$x_k = x_0 + V_k y_k$		

Algorithm: Right(A, M^{-1}, b, x_0, τ)				
1:	$r_0 = b - Ax_0$			
2:				
3:	$\beta = r_0 , v_1 = r_0/\beta, k = 1$			
4:	repeat			
5:	$z_k = M^{-1} v_k$			
6:	$w_k = A z_k$			
7:	for $i = 1,, k$ do			
8:	$h_{i,k} = \mathbf{v}_i^T \mathbf{w}_k$			
9:	$w_k = w_k - h_{i,k} v_i$			
10:	end for			
11:	$h_{k+1,k} = w_k , v_{k+1} = w_k/h_{k+1,k}$			
12:	$V_k = [v_1, \ldots, v_k]$			
13:	$H_k = \{h_{i,j}\}_{1 \le i \le j+1; 1 \le j \le k}$			
14:	$y_k = \operatorname{argmin}_{V} \ \beta e_1 - H_k y\ $			
15:	k = k + 1			
16:	until $\ \beta e_1 - H_k y_k\ \leq \tau$			
17:	$d_k = V_k y_k$			
18:	$x_k = x_0 + M^{-1}d_k$			

Mixed precision layout for preconditioned GMRES

Algorithm: Left(A, M^{-1}, b, x_0, τ)				
1:	$r_0 = b - Ax_0$	ua		
2:	$s_0 = M^{-1} r_0$	u _m		
3:	$\beta = \ s_0\ , v_1 = s_0/\beta, k = 1$	ug		
4:	repeat			
5:	$Z_k = A v_k$	ua		
6:	$w_k = M^{-1} z_k$	u _m		
7:	for $i = 1,, k$ do			
8:	$h_{i,k} = v_i^T w_k$	ug		
9:	$w_k = w_k - h_{i,k} v_i$	Иg		
10:	end for			
11:	$h_{k+1,k} = w_k , v_{k+1} = w_k/h_{k+1,k}$	Иg		
12:	$V_k = [v_1, \ldots, v_k]$			
13:	$H_k = \{h_{i,j}\}_{1 \le i \le j+1; 1 \le j \le k}$			
14:	$y_k = \operatorname{argmin}_{y} \ \beta e_1 - H_k y\ $	Иg		
15:	k = k + 1			
16:	until $\ \beta e_1 - H_k y_k\ \leq \tau$			
17:				
18:	$x_k = x_0 + V_k y_k$	ug		

Algorithm: Right(A, M^{-1}, b, x_0, τ)				
1:	$r_0 = b - Ax_0$	ua		
2:				
3:	$\beta = r_0 , v_1 = r_0/\beta, k = 1$	ug		
4:	repeat			
5:	$Z_k = M^{-1} V_k$	um		
6:	$w_k = Az_k$	ua		
7:	for $i = 1,, k$ do			
8:	$h_{i,k} = v_i^T w_k$	Иg		
9:	$w_k = w_k - h_{i,k} v_i$	иg		
10:	end for			
11:	$h_{k+1,k} = w_k , v_{k+1} = w_k/h_{k+1,k}$	Иg		
12:	$V_k = [v_1, \ldots, v_k]$			
13:	$H_k = \{h_{i,j}\}_{1 \le i \le j+1; 1 \le j \le k}$			
14:	$y_k = \operatorname{argmin}_{V} \ \beta e_1 - H_k y\ $	Иg		
15:	k = k + 1			
16:	until $\ \beta e_1 - H_k y_k\ \leq \tau$			
17:	$d_k = V_k y_k$	ug		
18:	$x_k = x_0 + M^{-1}d_k$	um		

Mixed precision layout for preconditioned GMRES

Algorithm: Left(A, M^{-1} , b, x_0 , τ)				
1:	$r_0 = b - Ax_0$			
2:	$s_0 = M^{-1} r_0$	um		
3:	$\beta = s_0 , v_1 = s_0/\beta, k = 1$	Ug		
4:	repeat			
5:	$Z_k = A V_k$			
6:	$W_k = M^{-1} Z_k$	u _m		
7:	for $i = 1,, k$ do			
8:	$h_{i,k} = v_i^T w_k$	Ug		
9:	$w_k = w_k - h_{i,k} v_i$	Ug		
10:	end for			
11:	$h_{k+1,k} = w_k , v_{k+1} = w_k/h_{k+1,k}$	Ug		
12:	$V_k = [V_1, \ldots, V_k]$			
13:	$H_k = \{h_{i,j}\}_{1 \le i \le j+1; 1 \le j \le k}$			
14:	$y_k = \operatorname{argmin}_y \ \beta e_1 - H_k y\ $	Ug		
15:	k = k + 1			
16:	$until \ \beta e_1 - H_k y_k\ \leq \tau$			
17:				
18:	$x_k = x_0 + V_k y_k$	Ug		

Algorithm: Flexible(A, M^{-1}, b, x_0, τ)				
1:	$r_0 = b - Ax_0$	ua		
2:				
3:	$\beta = r_0 , v_1 = r_0/\beta, k = 1$	ug		
4:	repeat			
5:	$Z_k = M^{-1} V_k$	um		
6:	$w_k = Az_k$	ua		
7:	for $i = 1,, k$ do			
8:	$h_{i,k} = \mathbf{v}_i^T \mathbf{w}_k$	иg		
9:	$w_k = w_k - h_{i,k} v_i$	иg		
10:	end for			
11:	$h_{k+1,k} = w_k , v_{k+1} = w_k/h_{k+1,k}$	Иg		
12:	$V_k = [v_1, \ldots, v_k], \ Z_k = [z_1, \ldots, z_k]$]		
13:	$H_k = \{h_{i,j}\}_{1 \le i \le j+1; 1 \le j \le k}$			
14:	$y_k = \operatorname{argmin}_{V} \ \beta e_1 - H_k y\ $	Иg		
15:	k = k + 1			
16:	until $\ \beta e_1 - H_k y_k\ \leq \tau$			
17:				
18:	$x_k = x_0 + Z_k d_k$	um		

How to read: u_a , u_m , and u_g refer to the precision or the unit roundoff. If we write $u_a \ll u_g$, it means u_a is an higher precision than u_g .

How to read: u_a , u_m , and u_g refer to the precision or the unit roundoff. If we write $u_a \ll u_g$, it means u_a is an higher precision than u_g .

► $u_a = u_m \ll u_g$: Applying A and M^{-1} in high precision to improve accuracy and robustness. Existing studies are dedicated to left-preconditioned GMRES with LU and QR-based preconditioners, and SPAI preconditioners.

! "A New Analysis of Iterative Refinement and Its Application to Accurate Solution of Ill-Conditioned Sparse Linear Systems" by **E. Carson and N. J. Higham**, 2017, SIAM SISC.

E "Three-Precision GMRES-Based Iterative Refinement for Least Squares Problems" by **E. Carson, N. J. Higham, and S. Pranesh**, 2020, SIAM SISC.

G "Five-Precision GMRES-Based Iterative Refinement" by **P. Amestoy, A. Buttari, N. J. Higham, J.-Y. LExcellent, T. Mary, and B. Vieublé**, 2024, SIAM SIMAX.

► $u_a = u_g \ll u_m$: Applying M^{-1} in a lower precision to improve performance. Existing studies are dedicated to flexible-preconditioned GMRES.

! "Using FGMRES to obtain backward stability in mixed precision" by **M. Arioli and I. S. Duff**, 2008, ETNA.

E "The stability of split-preconditioned FGMRES in four precisions" by **E. Carson and I. Daužickaitė**, 2024, ETNA. We want to answer the question:

What are all the numerically meaningful ways to set u_g , u_m , and u_a ?

Numerically meaningful means there is a **tradeoff** between employing computationally efficient **low precision**, the **accuracy** of the computed solution, and **number of iterations**. Two main important numerical properties of GMRES: **convergence rate** and **attainable accuracies**.

We cannot derive strong theoretical result on the convergence rate. "Any nonincreasing convergence curve is possible for GMRES" by A. Greenbaum, V. Pták and Z. Strakoš, 1996, SIAM SIMAX.

 \Rightarrow We focus on the attainable accuracy/error.

Two main important numerical properties of GMRES: **convergence rate** and **attainable accuracies**.

We cannot derive strong theoretical result on the convergence rate. "Any nonincreasing convergence curve is possible for GMRES" by A. Greenbaum, V. Pták and Z. Strakoš, 1996, SIAM SIMAX.

 \Rightarrow We focus on the attainable accuracy/error.

Two main ingredients for bounds on the attainable error:

 A generic preconditioner model fl(M⁻¹v_j) = (M⁻¹ + ΔM^(j))v_j, ||ΔM^(j)||_F ≤ c(n, k)u_mη||M⁻¹||_F,
The modular framework for the error analysis of GMRES.
■ "A modular framework for the backward error analysis of GMRES" by A. Buttari, N. J. Higham, T. Mary, and B. Vieublé, 2024, preprint.

Simplified bounds on the forward error

Let's call \hat{x} the computed solution and x the exact solution, we define the forward error as

$$\frac{\|\widehat{x} - x\|_2}{\|x\|_2}.$$

► Left:

$$\boldsymbol{u}_{\boldsymbol{g}}\kappa(\boldsymbol{M}^{-1}\boldsymbol{A}) + \boldsymbol{u}_{\boldsymbol{m}}\rho + \boldsymbol{u}_{\boldsymbol{a}}\kappa(\boldsymbol{A}),$$

where $\rho \leq \kappa (M^{-1}A)\kappa(M) \|Av_j\|_2 / \|A\|_F$.

► Right:

$$\boldsymbol{u}_{\boldsymbol{g}}\kappa(\boldsymbol{A}\boldsymbol{M}^{-1})\kappa(\boldsymbol{M}) + \boldsymbol{u}_{\boldsymbol{m}}\kappa(\boldsymbol{M}) + \boldsymbol{u}_{\boldsymbol{a}}\kappa(\boldsymbol{A}).$$

$$\boldsymbol{u}_{\boldsymbol{g}}\kappa(\boldsymbol{A}\boldsymbol{M}^{-1})\kappa(\boldsymbol{M})+\boldsymbol{u}_{\boldsymbol{a}}\kappa(\boldsymbol{A}).$$

List of the different strategies

	Left	Right	Flexible
$u_a = u_g = u_m$	exists	exists	exists
$u_a = u_m \ll u_g$	exists	new	new
$u_a = u_g \ll u_m$	-	new	exists
$u_a \ll u_g = u_m$	new	new	new
$u_a \ll u_g \ll u_m$	-	new	new
$u_a \ll u_m \ll u_g$	new	new	new

We choose $u_a \leq \min(u_g, u_m)$ to reduce the overall amount of combinations considered.

List of the different strategies

	Left	Right	Flexible
$u_a = u_g = u_m$	exists	exists	exists
$u_a = u_m \ll u_g$	exists	new	new
$u_a = u_g \ll u_m$	_	new	exists
$u_a \ll u_g = u_m$	new	new	new
$U_a \ll U_g \ll U_m$	_	new	new
$U_a \ll U_m \ll U_g$	new	new	new

We choose $u_a \leq \min(u_g, u_m)$ to reduce the overall amount of combinations considered.

➤ We run and compare the mixed precision strategies on various SuiteSparse matrices with various practical preconditioners.

➤ We employ restart (equivalent to iterative refinement) to improve all the solutions to the same prescribed accuracy

$$\frac{\|x - \widehat{x}\|_2}{\|x\|_2} \le 10^{-15}.$$

$$u_a = u_g = u_m$$

$u_a = u_m \ll u_g$

$$u_a = u_g \ll u_m$$

$u_a \ll u_g = u_m$

Low precision u_g

In the legend, a combination of precisions is defined by a triplet (u_a, u_g, u_m) . E.g., DSD means $u_a = D$, $u_g = S$, $u_m = D$.

15/17

Low precision *u_m*

Conclusion

Takeaways

➤ We derived the most descriptive **bounds on the attainable forward error** for left-, right-, and flexible-preconditioned GMRES.

➤ We **identified possible mixed precision strategies** to apply the preconditioners in GMRES. They present different tradeoffs between performance and accuracy/robustness.

► We highlighted that in mixed precision the difference between left-, right-, and flexible-preconditioning is critical.

Future work: High performance implementations of some of these mixed precision strategies to solve large linear systems from industrial applications.

"Mixed precision strategies for preconditioned GMRES: a comprehensive analysis" by
A. Buttari, X. Liu, T. Mary, and B. Vieublé, 2025, incoming.