
THÈSETHÈSE
En vue de l’obtention du

DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE

Délivré par : l’Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier)

Présentée et soutenue le 30/11/2022 par :

Bastien VIEUBLÉ

Mixed precision iterative refinement for the solution of large sparse linear systems

JURY
E M M A N U E L AGULLO INRIA Examinateur
M A R C BABOULIN Université Paris-Saclay Examinateur
A L F R E D O BUTTARI CNRS-IRIT Directeur de thèse
E R I N C L A I R E CARSON Charles University Rapportrice
S E R G E GRATTON INP-IRIT Président
N I C K HIGHAM University of Manchester Invité
J U L I E N LANGOU University of Colorado Denver Rapporteur
X I A O Y E S H E R R Y LI LBNL Rapportrice
T H É O MARY CNRS-LIP6 Co-directeur de thèse

École doctorale et spécialité :
MITT : Domaine STIC : Sureté de logiciel et calcul de haute performance

Unité de Recherche :
Institut de Recherche en Informatique de Toulouse

Directeur(s) de Thèse :
Alfredo BUTTARI et Théo MARY

Rapporteurs :
Xiaoye Sherry LI , Julien LANGOU et Erin Claire CARSON





À mes parents,

À mon frère,

À ma grand-mère





Abstract

The increasing availability of very low precisions (tfloat32, fp16, bfloat16, fp8) in hardware

pushes modern high performance computing to embrace mixed precision standards. By

employing mostly low precision and by making wise use of high precision, mixed precision

algorithms can leverage the low precision advantages while preserving the quality of the

computed solution. Mixed precision iterative refinement is one of the oldest and most

famous representatives of these algorithms; this method was shown to be very effective in

reducing the resource consumption of linear solvers while delivering accurate solutions in

a robust way.

This thesis is dedicated to investigating the use of this algorithm for the solution of large

sparse linear systems. We structure the document as follows.

Our first concern is to provide a comprehensive understanding of iterative refinement.

This part of our work covers a survey listing the different research studies on this algorithm

that explains its evolutions throughout time and a technical description of a selected set

of state-of-the-art iterative refinement algorithms.

Then, we focus on improving sparse direct solvers with iterative refinement. We pro-

ceed in two steps. First, we relax restrictive requirements on the LU-GMRES-IR3 algorithm,

which is a form of iterative refinement capable of handling inaccurate factorizations for

ill-conditioned problems. It leads us to propose the LU-GMRES-IR5 algorithm that has

five independent precision parameters and is more suited to the solution of large sparse

systems. Second, we address the parallel implementation of state-of-the-art iterative re-

finement algorithms combined with state-of-the-art approximate sparse factorizations to

solve real-life problems from academic and industrial applications. Our performance study

demonstrates significant reductions in time and memory with respect to a standard sparse

direct solver in double precision.

Finally, we use iterative refinement to improve sparse iterative solvers. We develop an

analysis for a new mixed precision preconditioned GMRES (M-GMRES-IR6) that aims at

covering previous existing implementations that are not yet covered by an analysis and at

proposing a new mixed precision strategy based on the application of the preconditioner

in a lower precision than the application of the original matrix A. Our numerical results

pave the way towards promising resource savings for parallel implementations of GMRES.

i





Résumé

L’accessibilité grandissante des arithmétiques à précision faible (tfloat32, fp16, bfloat16,

fp8) dans les calculateurs encourage le calcul à hautes performances à se tourner vers la

précision mixte. En employant principalement des précisions faibles tout en faisant un

usage intelligent de précisions hautes, les algorithmes de précision mixte sont capables

d’exploiter les bénéfices des précisions faibles tout en préservant la qualité de la solution

calculée. Le raffinement itératif est un des plus vieux et des plus célèbres représentants

de cette classe d’algorithme; il est capable de réduire efficacement la consommation de

ressource des solveurs linéaires tout en conservant la robustesse et la qualité de la solution.

Cette thèse est dédiée à étudier l’utilisation de cette algorithme pour la résolution de

systèmes linéaires creux. Elle est architecturée de la façon suivante.

Dans un premier temps nous nous intéressons à produire un récapitulatif complet

sur les algorithmes de raffinement itératif. Cela couvre une liste des différentes études de

recherche sur le sujet au travers du temps, et une description technique de certains de ces

algorithmes les plus à la pointe.

Dans un second temps nous nous intéressons à l’amélioration des solveurs directs creux

à l’aide du raffinement itératif. Nous procédons en deux étapes. D’abord nous relaxons des

conditions restrictives de l’algorithme LU-GMRES-IR3 qui est une forme de raffinement

itératif capable de traiter des factorisations peu précises pour des problèmes mal condition-

nés. Pour ce faire, nous proposons l’algorithme LU-GMRES-IR5 utilisant cinq précisions

indépendantes. Ensuite, nous abordons l’implémentation parallèle de raffinement itératifs

combinés avec des factorisations creuses approximées pour la résolution de problèmes

industrielles. Notre étude de performance démontre que ces approches nous permettent

d’obtenir des réductions importantes de la consommation en temps et en mémoire.

Finalement, nous nous intéressons à l’amélioration des solveurs itératifs creux. Nous

développons une analyse pour un nouvel algorithme de GMRES préconditionné en préci-

sion mixte (M-GMRES-IR6), cette analyse aspire en particulier à couvrir des implémenta-

tions existantes de GMRES et à proposer une nouvelle stratégie de précision mixte consis-

tant à appliquer le préconditionneur dans une précision plus basse que le produit matrice–

vecteur. Nos résultats numériques ouvrent la voie à des implémentations parallèles de

GMRES plus économes en temps et en mémoire.

iii





Remerciements

Le temps des remerciements est toujours un moment un peu spécial, c’est une des choses

que vous lisez en premier mais que j’écris en dernier. C’est donc non sans émotions que je

viens clôturer trois années de travail avec ces quelques lignes, en remerciant, finalement,

tous les gens brillants qui m’ont entouré et sans qui, par la force des choses, ce document

n’aurait jamais existé.

Les premières personnes directement responsables de la qualité de ce manuscrit sont

mes deux superviseurs Alfredo et Théo. Quand on a été aussi bien supervisé que moi, par

des gens scientifiquement et humainement au top, c’est difficile de ne pas produire quelque

chose de satisfaisant. Au-delà même de la rigueur scientifique, de la méthodologie et des

connaissances qu’ils m’ont transmise, ce sont des conseils, des opportunités, une visibilité

et une communauté qu’ils m’ont offert. En ce sens, ils n’ont pas “juste” été irréprochables,

mais ils m’ont aussi préparé une rampe de lancement pour l’avenir. Je tacherai d’être à la

hauteur de ce cadeau et de suivre leur modèle pour peut-être à mon tour, un jour, rendre

l’appareil. Pour toutes ces choses, pour le temps et l’énergie qu’ils m’ont consacrés, pour

leurs modesties, leurs gentillesses et leurs aides, pour leurs ambitions et leurs dévotions

à la discipline, je tiens à leur dire qu’ils ont toute ma reconnaissance et mon respect, que

cela a été un honneur de travailler avec de grands chercheurs comme eux, merci !

Durant ma thèse, j’ai eu la chance de travailler avec Patrick, Jean-Yves et Chiara (MUMPS

Tech). Je tiens à les remercier, premièrement, pour notre collaboration qui m’a permis

d’apporter une saveur concrète et pratique à ce travail, mais aussi pour leurs conseils, leurs

aident et pour certains mêmes, d’avoir été les supers professeurs qui m’ont introduit à ce

domaine et motivé à continuer en thèse.

La dernière personne ayant apporté le plus de soutien scientifique et matériel à cette

thèse est Nick. Il m’a aidé, conseillé et accueilli chaleureusement dans son équipe à l’University

of Manchester. Ses standards d’excellence et son expertise pointue ont grandement par-

ticipé à la qualité de ce travail, il a toute ma gratitude. Je remercie en passant toute son

équipe, le Numerical Linear Algebra group, avec qui j’ai eu des supers pauses café et dis-

cussions !

Je remercie chaleureusement Julien Langou, Sherry Li et Erin Carson pour avoir accepté

de donner leurs temps pour évaluer ce manuscrit et écrire un rapport, en plus d’avoir fait

v



vi

le (long) voyage jusqu’à Toulouse pour assister à la défense. Je remercie évidemment le

reste du jury Emmanuel Agullo, Marc Baboulin et Serge Gratton pour leurs retours sur mon

travail et les discussions stimulantes qu’y en ont suivie.

Je remercie l’ensemble de la communauté scientifique qui a construit pièce par pièce les

différents éléments qui ont rendu nos contributions possibles. En particulier, sans le travail

préalable d’Erin et Nick sur lequel les contributions de ce manuscrit sont majoritairement

basées, cette thèse n’aurait pas été possible.

Je remercie aussi les partenaires industrielles de MUMPS Tech et le projet EoCoE pour

m’avoir fourni quelques-uns des problèmes qui sont venus nourrir ce manuscrit. J’aimerais

aussi remercier l’équipe du CALMIP qui nous a offert l’accès au supercalculateur OLYMPE

et sur lequel toutes nos expériences de calcul parallèle ont été tournées.

Probablement que l’idée même de faire une thèse n’aurait pas germée dans mon es-

prit sans les opportunités de stages en recherche extraordinaires que mes professeurs à

l’ENSEEIHT m’ont déniché. Je pense notamment à Axel Carlier et Vincent Charvillat qui

m’ont permis de faire une année de césure à l’IPAL (Singapour) encadrée par Christophe

Jouffrais. Ou encore Serge Gratton qui m’a envoyé à l’AMSS (Pékin) encadré par Pr. Xin Liu

pour mon projet de fin d’étude. J’en profite pour remercier sincèrement mes encadrants

Christophe et Xin, qui m’ont accordé leur confiance et m’ont introduit au monde de la

recherche.

Avant et durant toute la durée de ma thèse, j’ai eu la chance d’être entouré de gens

bienveillants et stimulants qui ont indirectement contribué à l’aboutissement de ce travail.

Je ne peux pas passer à côté d’une petite dédicace à Justin et Matthieu, qui ont constam-

ment essayé de me décourager de faire un doctorat, ce qui, par plaisir de contradiction, a

eu l’effet totalement opposé. Je me plais donc à penser que c’est grâce à eux que je me suis

lancé dans cette aventure. C’est notamment avec eux que j’ai appris les rudiments du bon

thésard, et ils resteront à jamais mes guides spirituelles.

Je pense aussi à mes collègues Antoine J., Sophie, Théo, Sadok, Rémy, Valentin et Olivier,

avec qui l’ambiance au labo était au top et qui seront tous j’en suis sûr, d’ici une toute petite

poignée d’années, des docteurs (ou docteur avec l’HDR pour le concerné). Dans le tas, il

y a mes camarades de bureau Antoine B. et Jean-Paul, avec qui ont formé le trio de vieux

briscards insupportables de la F321. Les compagnons de bureau c’est un peu comme la

famille : on ne les choisit pas. Cependant, avec tout ce qu’on a traversé ensemble, je pense

que maintenant on peut dire qu’on est une famille !

Je ne peux évidemment pas faire l’impasse sur mes vieux compagnons Johary, Auriann

et Aurélien. J’ai l’impression que nos projets respectifs ont grandi ensemble depuis presque

une décennie maintenant. Nos vies et nos décisions ont été tellement entrelacées qu’il m’est

impossible d’évaluer à quel point ils ont influencé ce travail. Néanmoins, j’ai la certitude

que je leur dois beaucoup et que leurs talents et leurs passions les mèneront sur la voie des

spiritual warriors.

Il y a de ces personnes dont vous avez du mal à quantifier à quel point elles vous ont

aidés et soutenus quand leur bienveillance naturelle devient une sorte de routine à laquelle

on s’habitue. Peng (alias 海盗猫 ) a été une de ces personnes pour moi. En trois ans, elle a

dû totaliser plus de quelques milliers d’heures à m’écouter me plaindre au sujet de la thèse.



0. REMERCIEMENTS vii

Elle en sait d’ailleurs probablement plus que n’importe qui sur les backstages et détails

croustillants entourant ce manuscrit. Le soutien qu’elle m’a donné durant cette thèse a

une valeur inestimable à mes yeux et j’espère avoir réussi à lui en rendre un peu.

Naturellement, je ne peux pas finir ces remerciements sans mentionner les personnes

les plus importantes : mes parents, mon frère et ma grand-mère. C’est grâce à eux que j’en

suis ici et je leur dois tout. Comme ça a dû être pas mal de boulot de m’élever et de me

supporter, ce manuscrit est en quelque sorte un peu le résultat de leur travail aussi, c’est

pour ça que je leurs dédie.

Malheureusement, je n’ai pas la place pour citer toutes les personnes proches : famille,

colocs, vieux amis ou amis récents, etc. Néanmoins, sachez que je ne vous oublie pas. Merci

d’avoir été là ! Vous avez contribué aussi à ce travail.

Ironiquement, le chapitre des remerciements est aussi le meilleur endroit pour dire qui

je ne remercie pas. En particulier, je ne remercie pas la COVID-19 qui a démarré quatre

mois après le commencement de ma thèse et nous a tous bien ennuyé !

Finalement, je vous remercie vous, lecteur, qui que vous soyez, pour vous intéresser à

ce travail, et dans le même temps, à faire vivre ces résultats scientifiques et donner du sens

à ce manuscrit.

Il est donc temps pour moi de conclure et pour vous de commencer la lecture.





Contents

Abstract i

Résumé iii

Remerciements v

Acronyms xiii

List of Figures xv

List of Tables xvii

List of Algorithms xix

1 Introduction 1

2 Background 5

2.1 Floating-point arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Commonly available floating-point arithmetics in computers . . . . . 8

2.1.3 Low precision (floating-point) arithmetics . . . . . . . . . . . . . . . . . . . . 9

2.1.4 Rounding error analysis notations . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Direct solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 LU solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.2 Least squares problem and QR solver . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.3 The multifrontal sparse direct solver . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.4 Numerical approximations in sparse factorization . . . . . . . . . . . . . . 26

2.3 Iterative solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.1 GMRES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.2 Preconditioners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3.3 Other iterative solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

ix



x CONTENTS

3 Iterative refinement history 39
3.1 Newton’s method (17th century) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 From the 40s to the 70s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 From the 70s to the 2000s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4 From the 2000s to the 2010s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.5 From the 2010s to 2022 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 State-of-the-art iterative refinement 59
4.1 On the understanding of refining a linear system . . . . . . . . . . . . . . . . . . . . 59

4.2 Generalized iterative refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2.2 Forward and backward errors analyses . . . . . . . . . . . . . . . . . . . . . . 63

4.2.3 Various practical comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2.4 Targeting low precisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3 LU-IR3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3.1 Error analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3.2 Targeting low precisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4 LU-GMRES-IR3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4.1 Error analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4.2 LU-GMRES-IR3 vs LU-IR3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4.3 GMRES-IR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.5 Extension to least squares problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.5.1 Iterative refinement on the normal equations . . . . . . . . . . . . . . . . . 70

4.5.2 Iterative refinement on the overdetermined system . . . . . . . . . . . . . 71

4.5.3 Iterative refinement on the augmented system . . . . . . . . . . . . . . . . 72

4.6 Stopping criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.7 Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5 LU-GMRES-IR in five precisions 79
5.1 From LU-GMRES-IR3 to LU-GMRES-IR5 . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2 Rounding error analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2.1 Error analysis of MGS-GMRES with arbitrary matrix–vector products 82

5.2.2 Error analysis of LU-GMRES-IR5 with general ug and up precisions . 85

5.2.3 Convergence conditions on κ(A) . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2.4 Comments on the results of the analysis . . . . . . . . . . . . . . . . . . . . . 88

5.3 Identifying meaningful combinations of precisions . . . . . . . . . . . . . . . . . . 89

5.4 GMRES stopping criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.4.1 On the cost of refinement iterations . . . . . . . . . . . . . . . . . . . . . . . . 92

5.4.2 On the convergence behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.4.3 Rounding error analysis with stopping criterion . . . . . . . . . . . . . . . 96

5.5 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.5.1 Random dense matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97



CONTENTS xi

5.5.2 Real-life matrices from SuiteSparse . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.6 Practical advice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.7 LU-GMRES-IR5 for least squares problem . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6 Iterative refinement for sparse approximate factorizations 111
6.1 Reducing the computational cost of sparse direct solvers . . . . . . . . . . . . . . 111

6.2 Specific features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.3 Error analysis with approximate factorization . . . . . . . . . . . . . . . . . . . . . . 114

6.3.1 Approximate factorization model . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.3.2 Error analysis for LU-IR3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.3.3 Error analysis for LU-GMRES-IR5 . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.3.4 Summary of the error analysis and interpretation . . . . . . . . . . . . . . 118

6.3.5 Convergence conditions for BLR and static pivoting . . . . . . . . . . . . . 119

6.4 Performance analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.4.1 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.4.2 Experimental setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.4.3 Cast of the factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.4.4 Performance with standard factorization . . . . . . . . . . . . . . . . . . . . . 127

6.4.5 Performance with approximate factorizations . . . . . . . . . . . . . . . . . 134

6.4.6 Performance summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.4.7 Scalability and parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

7 Iterative refinement with preconditioned GMRES 149
7.1 State-of-the-art mixed precision strategies for GMRES . . . . . . . . . . . . . . . . 149

7.2 Left-preconditioned MGS-GMRES in mixed precision . . . . . . . . . . . . . . . . 152

7.2.1 Backward stability of left MGS-GMRES in mixed precision . . . . . . . . 154

7.2.2 Differentiating the precisions ua and um . . . . . . . . . . . . . . . . . . . . . 155

7.2.3 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

7.3 M-GMRES-IR6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

7.3.1 Equivalence between restarted GMRES and iterative refinement . . . 163

7.3.2 Error analysis and convergence conditions . . . . . . . . . . . . . . . . . . . 164

7.3.3 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

8 Conclusion 175
8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

8.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

Bibliography 183

Appendix 207





Acronyms

AQR-GMRES-IR3 QR preconditioned GMRES-based iterative refinement on the augmented

system in three precisions 71, 72, 74, 75, 103

AQR-GMRES-IR5 QR preconditioned GMRES-based iterative refinement on the augmented

system in five precisions 72, 103, 104

AQR-IR3 QR-based iterative refinement on the augmented system in three precisions 70,

71, 74, 75

BiCG BiConjugate Gradient 37, 174

BLR block low-rank xvii, xix, 26–29, 109–113, 117–119, 122, 123, 132, 133, 136, 138, 140–142,

146

CG Conjugate Gradient 37, 48, 51, 148, 149, 174

CGS Classical Gram-Schmidt xix, 32, 33, 150

CGS2 Classical Gram-Schmidt with reorthogonalization 32

CPU Central Processing Unit 9, 11, 48, 175

FGMRES Flexible Generalized Minimal RESidual 35, 48, 148

FOM Full Orthogonalization Method 37

FPGA Field-Programmable Gate Array 48, 52

GE Gaussian Elimination 10, 16, 18, 19, 21, 22, 41, 64

GEPP Gaussian Elimination with Partial Pivoting 19, 35, 41, 43, 44, 51, 53, 65, 66, 79, 94,

112, 175

GMRES Generalized Minimal RESidual i, 3, 4, 30–35, 37, 46, 48, 51, 52, 55, 66–68, 72, 77, 78,

80, 83, 87, 89–91, 93–95, 97, 98, 101–103, 108, 115, 118, 119, 124, 129, 131, 132, 136, 142,

143, 147–154, 156–159, 161, 162, 166, 169, 171, 173–176

xiii



xiv Acronyms

GMRES-IR GMRES-based iterative refinement 68, 78, 161

GPU Graphics Processing Unit 1, 3, 8, 9, 11, 12, 48, 51, 52, 110, 175

ILU Incomplete LU xv, 36, 68, 117, 149, 155, 161

ILUT Incomplete LU with threshold 36, 148, 169, 171

LS least squares 20, 42, 51, 55, 68, 71, 103, 108, 203

LU-GMRES-IR LU preconditioned GMRES-based iterative refinement 78, 86, 101, 107

LU-GMRES-IR3 LU preconditioned GMRES-based iterative refinement in three precisions

i, xvii, 3, 55, 65–68, 71, 73–75, 77–80, 86, 87, 99, 103, 107, 108, 110, 112, 148, 173, 174

LU-GMRES-IR5 LU preconditioned GMRES-based iterative refinement in five precisions

i, xv, xvii, 3, 4, 66, 77–80, 87–92, 94–103, 107–115, 117–119, 122–133, 136, 138, 139, 142–

144, 146, 149, 153, 161, 162, 164, 165, 171, 174–176

LU-IR LU-based iterative refinement xix, 64, 78, 111

LU-IR3 LU-based iterative refinement in three precisions xv, xvii, 55, 64, 65, 67–69, 73–75,

78, 87–89, 91, 95–103, 108–115, 118, 119, 124–133, 136, 138, 141–144, 146, 174–176

M-GMRES-IR6 GMRES-based iterative refinement with arbitrary preconditioner M in six

precisions i, xvi, 4, 147, 150, 160–172, 174, 176, 177

MGS Modified Gram-Schmidt xix, 31–33, 150, 204

MGS-GMRES Modified Gram-Schmidt Generalized Minimal RESidual 30, 32, 34, 66, 67, 72,

79–83, 90, 94, 104, 108, 116, 118, 147, 150–153, 156, 157, 160–162, 171, 174, 203–205

MINRES MINimal RESidual 37, 174, 175

MUMPS MUltifrontal Massively Parallel sparse direct Solver 26, 45, 52, 109, 118–120, 122–

125, 132, 136, 138, 140, 142–144, 146, 176

QR-IR3 QR-based iterative refinement in three precisions 69

restarted GMRES restarted Generalized Minimal RESidual 33, 52, 68, 95, 161, 165

TPU Tensor Processing Unit 1, 9, 11



List of Figures

2.1 Bits distribution on low precision arithmetics. . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Dense tile LU (left-looking) factorization. . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 A sparse matrix and its elimination tree. . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Fill-in. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Right-looking, left-looking, and multifrontal approaches. . . . . . . . . . . . . . . 24

2.6 Assembly tree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.7 Compression by block of a dense matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.8 Entries in A and in the ILU and full LU factors. . . . . . . . . . . . . . . . . . . . . . . 36

2.9 A block diagonal decomposition of a matrix. . . . . . . . . . . . . . . . . . . . . . . . 37

4.1 Newton’s method in the presence of rounding errors. . . . . . . . . . . . . . . . . . 60

5.1 Experimental convergence conditions of LU-GMRES-IR5. . . . . . . . . . . . . . 98

5.2 Experimental convergence conditions of five precisions variants. . . . . . . . . 99

5.3 Condition numbers of SuiteSparse matrices after scaling. . . . . . . . . . . . . . . 100

5.4 Performance profile of different variants of LU-IR3 and LU-GMRES-IR5. . . . 102

5.5 Forward error achieved by different variants of LU-GMRES-IR5 on SuiteS-

parse matrices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.1 Recursive cast in-place. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.2 Memory consumption of LU-GMRES-IR5. . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.3 Forward error achieved by three IR variants on our set of matrices. . . . . . . . 129

6.4 Execution time on a subset of large sparse matrices. . . . . . . . . . . . . . . . . . . 130

6.5 Memory consumption on a subset of large sparse matrices. . . . . . . . . . . . . 132

6.6 Execution time for different numbers of threads. . . . . . . . . . . . . . . . . . . . . 145

6.7 Execution time and memory consumption for different numbers of MPI. . . 146

6.8 Ratio between the DMUMPS solve and factorization operations. . . . . . . . . 147

7.1 Evolution of ρA and ρM with varying condition numbers on M . . . . . . . . . . 160

7.2 Evolution of ρA and ρM with varying condition numbers on A. . . . . . . . . . . 161

7.3 Number of iterations according to κ(A) and κ(M ) on random matrices. . . . . 169

xv



xvi LIST OF FIGURES

7.4 Supplement for Figure 7.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

7.5 Forward error for different variants of M-GMRES-IR6 on SuiteSparse matrices.172



List of Tables

2.1 List of commonly available floating-point arithmetics. . . . . . . . . . . . . . . . . 8

2.2 Theoretical complexities of the multifrontal sparse solver. . . . . . . . . . . . . . 25

2.3 Theoretical complexities of the BLR multifrontal sparse solver. . . . . . . . . . . 29

3.1 Summary of existing scientific papers about iterative refinement. . . . . . . . . 56

4.1 Convergence conditions of LU-IR3 vs LU-GMRES-IR3. . . . . . . . . . . . . . . . . 69

4.2 List of convergence conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.3 List of limiting accuracies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.1 Convergence conditions of LU-GMRES-IR5. . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2 Convergence conditions and limiting accuracies of LU-GMRES-IR5. . . . . . . 94

5.3 Number of LU solves for different variants of LU-IR3 and LU-GMRES-IR5. . 101

6.1 Set of large sparse matrices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.2 Execution time comparison between cast on the fly and cast in-place. . . . . 127

6.3 Execution time and memory consumption on our set of matrices. . . . . . . . 128

6.4 Execution time and memory consumption with BLR on industrial matrices. 136

6.5 Supplement for Table 6.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.6 Execution time and memory consumption with compressed active memory. 139

6.7 Execution time with static pivoting on industrial matrices. . . . . . . . . . . . . . 141

6.8 Execution time with BLR and static pivoting on industrial matrices. . . . . . . 142

6.9 Best execution time and memory consumption. . . . . . . . . . . . . . . . . . . . . . 144

7.1 Summary of existing scientific papers about mixed precision GMRES. . . . . . 152

xvii





List of Algorithms

2.1 Dense point LU factorization (without pivoting). . . . . . . . . . . . . . . . . . . . . 17

2.2 Dense forward substitution and backward substitution. . . . . . . . . . . . . . . . 17

2.3 Dense tile LU (left-looking) factorization (without pivoting). . . . . . . . . . . . . 18

2.4 BLR LU factorization (without pivoting). . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5 Arnoldi with MGS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.6 MGS-GMRES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.7 CGS and MGS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.8 Restarted GMRES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.9 Left- and right-preconditioned MGS-GMRES. . . . . . . . . . . . . . . . . . . . . . . 35

4.1 Generalized iterative refinement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 LU-IR3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3 LU-GMRES-IR3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4 QR-IR3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.5 AQR-IR3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.6 AQR-GMRES-IR3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.7 Squeezing a matrix to precision u f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.1 LU-GMRES-IR5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2 AQR-GMRES-IR5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.1 Complexities of LU-IR and LU-GMRES-IR. . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.1 Left-preconditioned MGS-GMRES in mixed precision. . . . . . . . . . . . . . . . . 153

7.2 M-GMRES-IR6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

xix





1 Introduction

This thesis is essentially interested in computing efficiently, accurately, and reliably the

solution of a large sparse square linear system

Ax = b , A ∈Rn×n , b , x ∈Rn . (1.1)

This linear algebra kernel is central for many applications, particularly in numerical simu-

lations that require the solution of increasingly high-dimensional problems on supercom-

puters of increasing size and power.

Approximately every decade, the peak flops rate of the best supercomputer of the Top500 [2],
listing the 500 first most powerful supercomputers in the world, is increased by three orders

of magnitude. Just recently, in spring 2022, the Frontier supercomputer located at the Oak

Ridge National Laboratory (USA) was announced to be officially the first supercomputer

to attain the Exaflops. However, leveraging this power for real-life scientific computing

applications is not straightforward. Primarily because Moore’s law is approaching its end

(Hennessy and Patterson [106]), and it becomes more and more challenging to increase

the density of the transistors inside the processors. Consequently, the increasing power of

modern supercomputers does not entirely rely anymore on the increasing speed and num-

ber of cores on a single chip but, instead, relies on two major design choices: first, the use

of massive parallelism where one supercomputer gathers thousands of processors and, so,

hundreds of thousands (sometimes millions) of cores; second, the use of specialized pro-

cessing units that are extremely fast but only for a selected type of operations (e.g., Graphics

Processing Units (GPUs), Google’s Tensor Processing Units (TPUs), or low precision units);

the cohabitation of these units of different capabilities in the same computer is referred

to as heterogeneity. Therefore, to benefit from the power of modern supercomputers, it is

essential to design algorithms to distribute the work amongst many cores of processing

units of different types.

While parallelism will be discussed to some extent, this manuscript mainly focuses on

improving the solution of (1.1) by harnessing the capabilities of a specific kind of processing

unit: the low precision units. By using a smaller number of bits to represent the numbers

and perform the operations, these low precision units offer a significant avenue to reduce

the execution time, the memory, and the energy consumption but intrinsically worsens

1



2

the accuracy of the computations. Some applications, such as machine learning that can

be very greedy in resources and for which these units were initially made, can settle for low

accuracy. This is unfortunately not the case for many scientific computing problems; in

particular, solving (1.1) exclusively in low precision would generally not achieve satisfactory

accuracy on the solution with respect to the requirement of the application. This awakened

the interest around mixed precision algorithms whose philosophy nowadays is to perform

the high resource demanding parts of the computations in low precisions and recover

the accuracy on the solution by making strategic use of more costly high precisions. We

generally want the cost of the computations done in more expensive high precisions to stay

limited, such that the application can benefit as much as possible from the low precision

advantages.

In this manuscript, we aim at improving with mixed precision the two traditional choices

of solvers for the solution of large sparse linear systems: direct and iterative solvers. Direct

methods are based on a factorization of the matrix A that is used to compute directly the

solution x of (1.1); they are generally considered very robust as they are capable of comput-

ing accurately and reliably the solution without the need for the user to provide suitable

parameters nor understand how the solver works: direct methods work out of the box. They

are also the methods of choice when the problem is numerically very difficult as they can

generally still deliver the solution using a predictable amount of resources. However, these

advantages come at the cost of high computational complexity. On the other hand, iterative

methods compute iterates xi converging towards the solution x of (1.1); they can compute

the solution of a numerically simple problem with a far smaller amount of resources. Actu-

ally, for extremely high-dimensional problems, they might be the only possible approach

because direct solvers might require an unbearable amount of resources to compute the

solution. Their downsides are that their efficiency is very dependent on the numerical prop-

erties of the problem and the user parametrization. Note that there is a third kind of solver,

the hybrid solver, that aims at combining the strengths of both direct and iterative methods

(e.g., domain decomposition methods Dolean et al. [63], Agullo et al. [6] or block-projection

methods Duff et al. [71]).

The oldest and the most well-known mixed precision approach for improving these

two kinds of solvers is iterative refinement; this is the central algorithm of this document

on which all our work is built upon. Iterative refinement refines a first inaccurate solution

of (1.1) into a more accurate solution by applying a finite predictable number of refinement

steps on top of a given linear solver. A major characteristic of iterative refinement is that

the solution is guaranteed to be improved under some conditions on the matrix A and

the accuracy of the linear solver used. This algorithm is generally attributed to Wilkinson

[213], who implemented it on the Automatic Computing Engine (ACE) in the 40s alongside

his work with Alan Turing. Since then, iterative refinement has evolved continuously and

has been proven very efficient in improving the performance of different kinds of linear

solvers by targeting low precision computations (e.g., Langou et al. [137] for LU direct solver,

Turner and Walker [206] for Krylov subspace based iterative solver, and Göddeke et al. [88]
for multigrid solver).

Recently, important breakthroughs were achieved on iterative refinement combined



1. INTRODUCTION 3

with direct solvers. Specifically, Carson and Higham [44; 45] used a new general analysis of

iterative refinement to derive two new iterative refinement variants, both built on top of

an LU direct solver and using up to three different precisions to produce fast, reliable, and

highly accurate solution for (1.1). One of these variants uses a Generalized Minimal RESid-

ual (GMRES) iterative solver preconditioned by the LU factors computed in low precision;

all the operations within GMRES are carried out in the working precision, except for the

matrix-vector products and the application of the preconditioner, which require the use

of extra-precision. This so-called LU preconditioned GMRES-based iterative refinement

in three precisions (LU-GMRES-IR3) is more resilient than the traditional iterative refine-

ment variant to very low precision factorizations and ill-conditioned systems. Haidar et al.

[102; 104; 103]) demonstrated that these new variants could efficiently take advantage of

half precision within GPU tensor cores to accelerate up to a factor 4–5 a double precision

direct solver for the solution of dense linear systems.

These significant performance improvements are extremely encouraging, but unfortu-

nately, recent equivalent studies for the direct solution of large sparse linear systems are

few, and most of them date back to the late 2000s (Buttari et al. [42], Baboulin et al. [29]).

In particular, these studies do not cover the most recent forms of iterative refinement and

sparse factorization, nor the new possibilities in terms of mixed precision offered by the

recent hardware and software. For this reason, this document’s first important concern

is adapting and implementing the state-of-the-art iterative refinement methods for the

efficient direct solution of sparse linear systems. To do so, we proceed in two steps.

First, we revisit LU-GMRES-IR3. Because the use of extra-precision for applying the

LU factors in the preconditioned matrix–vector product can be expensive and especially

unattractive if it is not available in hardware, this algorithm is unsuitable for many applica-

tions requiring the efficient parallel computation of the solution of a large sparse system. It

is also the reason why existing implementations of LU-GMRES-IR3 targeting the solution

of dense linear systems have not used extra-precision, despite the absence of error analysis

for this approach. We propose to relax the requirements on the precisions used within GM-

RES, allowing the use of arbitrary precisions for applying the preconditioner and for the

rest of the operations. We obtain the algorithm we call LU preconditioned GMRES-based

iterative refinement in five precisions (LU-GMRES-IR5) on which we carry out a rounding

error analysis that generalizes that of LU-GMRES-IR3.

Second, we implement these new state-of-the-art mixed precision iterative refinement

variants on top of state-of-the-art sparse factorizations for the parallel solution of (1.1).

In particular, we develop a new error analysis for these variants under a general model of

LU factorization that accounts for the approximation methods typically used by modern

sparse solvers, such as low-rank approximations or relaxed pivoting strategies. We then

provide a detailed performance analysis of both the execution time and memory consump-

tion of different iterative refinement algorithms based on different approximate sparse

factorizations. Our performance study demonstrates considerable reductions in both time

and memory consumption on large, sparse problems coming from a variety of real-life and

industrial applications.

While these previous contributions primarily focus on the improvement of sparse di-



4

rect solvers, the other important concern of this manuscript is the improvement of the

GMRES iterative solver for the solution of (1.1). Many efforts have already been devoted to

the topic, and many different mixed precision strategies were proposed (Turner and Walker

[206], Buttari et al. [42], Arioli and Duff [25], Gratton et al. [96] to cite a few). However, this

high number of different specialized strategies lacks a consistent, shared, and up-to-date

analysis that would serve as a general framework. Therefore, we propose to study an arbi-

trarily preconditioned GMRES that makes use of an iterative refinement process combined

with a new mixed precision scheme for the computation of the preconditioned matrix–

vector products; we call it GMRES-based iterative refinement with arbitrary preconditioner

M in six precisions (M-GMRES-IR6). This algorithm covers most of the previous mixed

precision strategies for GMRES in addition to providing new ones of potential interest re-

garding the reduction of the resource consumption.

The remaining of this manuscript is about giving a comprehensive understanding of

the central algorithm of our work: iterative refinement. To do so, we first provide a survey

gathering, in chronological order, the different research studies on this algorithm. It allows

us to describe its different evolutions and contextualize them in light of the hardware and

software characteristics of different computing eras. Then, we consider the most recent

forms of iterative refinement on which we provide finer technical details that are needed

for a good understanding of the main contributions of this document.

Although solving sparse systems is the underlying focus of most of this manuscript’s

contributions, many of our findings also apply to the solution of dense systems.

This manuscript is organized as follows. In order to make this document self-contained,

we provide in chapter 2 general background on floating-point rounding error analysis and

sparse linear solvers. In chapters 3 and 4 we present, respectively, our chronological survey

on iterative refinement and the technical details on a few of its most recent variants. In

chapter 5 we introduce and study LU-GMRES-IR5, and in chapter 6 we present our per-

formance analysis on large sparse linear systems. We present and study M-GMRES-IR6 in

chapter 7. Finally, we provide our conclusions and final insights in chapter 8.



2 Background

For the proper understanding of this manuscript, we recall in this chapter all
the fundamentals, key notions, and results on which we base our contributions.

The topics covered in this document are distributed over three main blocks.
The first is floating point rounding error analysis used to study our mixed precision
algorithms; we cover it in section 2.1. The second and the third are direct and
iterative solvers that we both aim at improving through mixed precision; they are
covered respectively in sections 2.2 and 2.3.

2.1 Floating-point arithmetic
The concept of mixed precision algorithm, which we investigate, is tightly related to the

floating-point representations of numbers in computers and the intrinsic rounding errors

generated by their computations. For this reason, we recall the basics of floating-point

arithmetic and the standard rounding error model in section 2.1.1. We present some com-

monly available floating-point arithmetics that we will use throughout this manuscript in

section 2.1.2. We discuss the recent and rapid evolution of low precisions motivating the

use of mixed precision algorithms in section 2.1.3. We finally present the different notations

and notions that will be in use for the error analyses carried out all over this manuscript in

section 2.1.4.

2.1.1 Basics

2.1.1.1 Floating-point numbers and various definitions. The floating-point arithmetic is

an inexact arithmetic aiming at approximately representing real numbers with a signifi-

cand scaled by an exponent, both encoded with a fixed number of digits in a given base. In

particular, we call a bit a base-two/binary digit. A floating-point number y is of the form

y =±m ×β e−t , (2.1)

5



6 2.1. FLOATING-POINT ARITHMETIC

where

• β is the base (usually base-two/binary in computers).

• ± is the sign. It can be carried on one bit in binary base; for example, 0 represents a

positive number, while 1 represents a negative one.

• m is the significand (or mantissa). It is a positive integer carrying the t significant

digits of the number; therefore, m satisfies 0≤m ≤β t −1.

• e is the biased exponent. It is a positive integer encoded on a given number of digits

and biased to reach negative values; it is bounded by emin ≤ e ≤ emax.

We can also express a floating-point number y by the equivalent form

y =±β e
�

d1

β
+

d2

β2
+ · · ·+

dt

β t

�

=±β e × .d1d2 . . . dt , (2.2)

where each digit satisfies 0≤ di ≤β −1.

We define a floating-point number system as the finite subset of the real numbers, noted

F ⊂R, composed of the representable numbers by (2.1) for a given base β and given inte-

gers t , emin, and emax. Defined as such, the representation of a given y ∈F is not necessarily

unique; for example, for a systemF characterized by β = 10 and t = 5, both (m = 01234,

e = 1) and (m = 12340, e = 0) can represent y = 0.1234. To ensure the uniqueness of the

representation, we assume for all y ̸= 0 that d1 ̸= 0 or equivalently m ≥ β t−1; the system

F is then normalized. In computers with binary base, this normalization is translated by

having a phantom bit d1 not directly stored and implicitly set to 1.

On a computer with a given floating-point number systemF , any x ∈R is represented

by some close value fl(x ) ∈ F (the chosen value depends on the rounding strategy: for

example round to nearest, stochastic rounding, and others).

Two central properties are related toF . The first one is the range of representation of

the numbers, that is, the maximum and minimum non-negative numbers inF . The range

of a normalized systemF is mainly defined by the maximum and minimum representable

exponents emax and emin; thus, as β t−1 ≤m ≤ β t − 1, for all y ∈ F\{0} we have β emin−1 ≤
|y | ≤ β emax (1− β−t ). For instance, consider the case of the IEEE fp32 arithmetic using a

binary base with 8 bits in the exponent and a -127 bias. As the exponent values -127 and

+128 are reserved for special numbers, we have emin =−126 and emax =+127, and so, for all

y ∈F we have 10−38 ≲ |y |≲ 10+38. Naturally, the greater the number of bits in the exponent,

the larger the range. In the situation where x ∈R is outside of the range of representation

ofF , the usual way for the computers to handle this is:

• For underflow, which is the case where the number to represent is smaller in magni-

tude than the smallest representable value, x is rounded to 0.

• For overflow, which is the case where the number to represent is higher in magnitude

than the highest representable value, x is rounded to ± inf.



2. BACKGROUND 7

Underflows can also be handled with the addition of the subnormal numbers in the system

F . They are denormalized numbers having the minimum exponent (i.e., d1 = 0 and e =
emin) and fill the gap between β emin−1 and 0, pushing the minimum positive value further to

β emin−t . Underflows and overflows can be challenging issues, in particular in cases where

the range ofF is small.

The second important property is the unit roundoff ofF . It corresponds to the maxi-

mum relative error made by the representation fl(x ) ∈F of x ∈R. The unit roundoff noted

u is determined by the number of digits t in the significand and is defined as u =β1−t /2.

It satisfies for all x ∈R lying in the range ofF

fl(x ) = x (1+δ), |δ| ≤ u . (2.3)

We can interpret the unit roundoff as a measure of the accuracy of a given floating-point

arithmetic. For example, in the case of the IEEE fp32 arithmetic, there are 24 bits in the

significand (including one implicit bit for the normalization), giving u = 21−24/2≈ 5.96×
10−8. Naturally, a higher number of digits t leads to a smaller u and better accuracy.

2.1.1.2 Standard error model. Because the result of an operation between two floating-

point numbers x , y ∈ F is not necessarily in F , the process of rounding the result to a

close element in F introduces error in the computation. These errors can significantly

deteriorate the final result to some degree where the computed result might be unusable.

To be able to study these rounding errors, we are using the standard error model of

floating-point arithmetic defined by Higham [114, sect. 2.2] and in which x , y ∈F satisfy

fl(x op y ) = (x op y )(1+δ), |δ| ≤ u , op ∈ {+,−,∗,/}, (2.4)

where u is the unit roundoff ofF . Throughout the manuscript, we use the notation fl(·) to

denote a given expression’s computed value in floating-point arithmetic. We add a “hat”

on exact quantities to denote their computed counterpart; for example, if we denote the

true solution as “x ”, its computed counterpart is denoted “bx ”.

The IEEE 754 standard, published in 1985 [128], defines binary floating-point arith-

metics implementations that are portable, reliable, and allow for reproducibility across com-

puters that implement it. The standard specifies in particular floating-point arithmetics

systems (e.g., IEEE fp32 and fp64 composed respectively of 32 and 64 bits distributed over

the exponent, significand, and the sign), but also rounding rules, basic operations, or han-

dling of exceptions. In particular, the standard error model (2.4) is valid for the arithmetic

satisfying the IEEE standard (but is also valid for the rest of the arithmetics we will use in

this manuscript).

2.1.1.3 Other arithmetics. In this manuscript, we mainly focus our discussion around

floating-point arithmetics because this is the number representation on which we based

our work. However, note that there exists other number representations, such as fixed-point

or posit numbers, that are also commonly used.



8 2.1. FLOATING-POINT ARITHMETIC

2.1.2 Commonly available floating-point arithmetics in computers
In Table 2.1, we present different binary floating-point arithmetics that can be found in

computers nowadays, either directly supported by the hardware or sometimes emulated

in the software. They are ordered by decreasing unit roundoff, and, for convenience, we

will often refer to them in this manuscript by their respective symbols (e.g., D for fp64).

Table 2.1: Parameters for floating-point arithmetics: symbol used in this manuscript, num-
ber of bits in the significand, number of bits in the exponent, unit roundoff, and range.

Arithmetic Symbol Significand Exponent Unit roundoff Range

fp128 Q 112 (+1) 15 9.63×10−35 10±4932

double-fp64 D D 106 (+1) 11 6.16×10−33 10±308

fp64 D 52 (+1) 11 1.11×10−16 10±308

fp32 S 23 (+1) 8 5.96×10−8 10±38

tfloat32 T 10 (+1) 8 4.88×10−4 10±38

fp16 H 10 (+1) 5 4.88×10−4 10±5

bfloat16 B 7 (+1) 8 3.91×10−3 10±38

fp8 (E4M3) R 3 (+1) 4 6.25×10−2 10±2

fp8 (E5M2) R * 2 (+1) 5 1.25×10−1 10±5

In particular, the fp128 quadruple, the fp64 double, the fp32 single, and the fp16 half

precisions are covered by the latest revision (2019) of the IEEE 754 standard [128].
While hardware widely supports fp64 and fp32, fp128 quadruple precision is almost

exclusively implemented in software. For instance, we can access it through the GCC com-

pilers using the Quad-Precision Math Library [85] or the Intel Fortran Compiler. Due to

the software implementation, the use of this arithmetic is generally extremely expensive:

about an order of magnitude slower than double-fp64 precision (see Higham [115]). It can

be noted that some hardware, such as the IBM power9 processor [127] and the IBM z13

processor [146], supports fp128 natively.

The double-fp64 arithmetic (or double-double) is an alternative to fp128; it represents

a number by a pair of IEEE fp64: one represents the higher order bits of the significand

and the other the lower order bits. Thus, it leads to 2× 53+ 1 (implicit) = 107 bits for the

significand, and double-double is therefore relatively close to the fp128 accuracy. The range

of double-double remains identical to fp64 and is substantially smaller than the fp128 one.

However, while being less accurate and narrower than fp128, manipulating numbers in

this precision reduces to a sequence of fp64 operations supported by the hardware and, so,

can run faster than software implemented fp128 (Li et al. [145]).

Interest and support for fp16 arithmetic in scientific computing started relatively re-

cently, during the 2010s, even though earlier hardware implementations of 16-bit floating-

point numbers already existed (e.g., Hitachi’s HD61810 DSP 1982 [123], GeForce FX 2003 [210]).

Interestingly, it was first mainly integrated on GPUs; for example, it began to be supported

and accessible through the CUDA toolkit from the NVIDIA Maxwell architectures (2015)

and was integrated into the subsequent Pascal, Volta, Turing, Ampere and the upcoming

Hopper architectures. It has also been integrated into the AMD GCN and CDNA GPU ar-



2. BACKGROUND 9

chitectures. Its integration and accessibility on Central Processing Units (CPUs) are even

more recent. For example, some versions of the ARM architectures support it (ARMv7 and

ARMv8 [62]), in particular, Fujitsu’s A64FX CPUs that are installed on the Fugaku super-

computer (#2 TOP500 [2] in 2022, Japan) and the Raspberry Pi are based on these ARM

architectures. In addition, it is planned to be used in Intel’s Sapphire Rapids that will be

installed on the Aurora exascale supercomputer (note that it has been available as a storage

format from Intel’s Ivy Bridge architecture).

Some of the arithmetics in the list are not covered by the IEEE 754 standard and were

promoted and implemented by hardware constructors. The bfloat16 arithmetic [1] (also

called the “Brain floating-point format”) has been designed by Google Brain to be used in

Google’s TPU AI accelerators (Norrie et al. [166]). Other constructors have also adopted it;

for instance, it is present on Intel’s Nervana NNP-L1000 AI accelerators, on Intel’s Cooper

Lake architecture (and is planned to be on Intel’s Sapphire Rapids), on the ARM architec-

tures from the ARMv8.6-A revision, and it has been introduced in NVIDIA’s GPUs from the

Ampere architecture.

The tfloat32 arithmetic [168] has been designed by NVIDIA and has been implemented

as part of the tensor core units of the Ampere GPU (Choquette et al. [49]).

The new fp8 (E4M3 or E5M2) arithmetics were announced in 2022 by NVIDIA to be

supported as part of the tensor core units of their new Hopper GPU [167].
The arithmetics at the bottom of Table 2.1 (i.e., fp32, tfloat32, fp16, bfloat16, and fp8),

using a smaller number of bits and having a reduced accuracy and range, are the so-called

low precisions; they play an essential role in the contributions of this manuscript. More is

said about their properties, differences, and trade-offs in the next section 2.1.3.

2.1.3 Low precision (floating-point) arithmetics

2.1.3.1 Benefits. The low precision (floating-point) arithmetics, or simply low precisions,

refer to arithmetics using a small number of bits to represent numbers. While having fewer

bits for the representation of the exponent and the significand leads to a smaller range and

a decreased accuracy (i.e., a larger unit roundoff), using low precisions provides however

three major benefits:

• Because the storage is proportional to the total number of bits, storing the numbers

in low precision decreases the memory consumption.

• Because the speed of computations in processing units can be at least proportional

to the total number of bits and because data movements and communications are

all proportional to the total number of bits, computing with low precision reduces

computation times for both compute- and memory-bound applications.

• Because the power consumption is approximately proportional to the square of the

number of significand bits, using low precision decreases the energy consumption.

For instance, fp16 and tfloat32 (11 bits in the significand) consume five times less

energy than fp32 (24 bits), and bfloat16 (8 bits) consumes nine times less energy than

fp32.



10 2.1. FLOATING-POINT ARITHMETIC

Reducing time, memory, and energy consumption are all challenging objectives for the

ease of high performance computing. Consequently, as low precisions can significantly

decrease these expensive resources, their use is becoming a major avenue of research.

In this manuscript, as many of our targeted applications require fp64 accuracy for the

solution of (1.1), we will consider that every precision below fp32 (included) in Table 2.1 is

a low precision. We represent these arithmetics in Figure 2.1.

sign
exponent

(8 bits)
signif.

(23 bits)

fp32
Range 10±38, u = 6×10−8

sign
exponent

(5 bits)
signif.

(10 bits)

fp16
Range 10±5, u = 5×10−4

sign
exponent

(8 bits)
signif.
(7 bits)

bfloat16
Range 10±38, u = 4×10−3

sign
exponent

(8 bits)
signif.

(10 bits)

tfloat32
Range 10±38, u = 5×10−4

sign
exponent

(4 bits)
signif.
(3 bits)

fp8 (E4M3)
Range 10±2, u = 6×10−2

sign
exponent

(5 bits)
signif.
(2 bits)

fp8 (E5M2)
Range 10±5, u = 1×10−1

Figure 2.1: Bits distribution on low precision arithmetics.

2.1.3.2 Challenges. All these low precisions have different trade-offs between the number

of bits, the accuracy, and the range. In particular, both fp16 and bfloat16 have 16 bits, but

these bits are distributed differently: bfloat16 has more bits for the exponent and, thus, a

better range than fp16; fp16 has more bits for the significand and, thus, a better accuracy.

These two design choices illustrate the two different challenges that low precisions face:

narrow range and low accuracy.

The loss of accuracy when using low precision is probably the most apparent source of

challenges. For some applications, such as machine learning, the low accuracy does little or

no deterioration to the quality of the results as said by Dean [56] “Deep learning models [· · · ]
are very tolerant of reduced-precision computation”. Therefore, because neural networks

can be extremely greedy in resources, the use of low precisions has become prevalent for

these applications; a founding work on the topic is from Courbariaux et al. [52]. Because

of its massive popularity and efficient combination with low precisions, machine learning

has actually been the main driver of the recent increase in support for these arithmetics.

However, many scientific computing applications require a high accuracy on the computed

solution and, consequently, low precisions cannot be used right out of the box. For exam-

ple, solving (1.1) entirely in fp16 with Gaussian Elimination only yields a solution with an



2. BACKGROUND 11

error at best of order 10−4 (cf. Theorem 2.6), which is unsatisfactory in many cases. For

this reason, leveraging low precision power for solving scientific computing problems is

not straightforward. In particular, using low precisions for solving (1.1) while meeting a

reasonable accuracy on the solution is the raison d’être of this manuscript.

Regarding the challenges related to the range, the fp16 case is interesting because, while

many linear algebra applications can accommodate the fp32 10±38 range for a well-scaled

problem, the fp16 10±5 range is relatively narrow and can be an issue. In the case of a linear

system solution, underflows can cause a severe loss of information and, at worst, could

transform a solvable linear system into a singular problem. Overflows are unrecoverable

because we cannot produce a satisfactory solution when there are infinities among the

entries. Consequently, in general, targeting narrow range precisions requires special care

to avoid overflows and limit as much as possible underflows (e.g., adopt a scaling strategy

such as in Higham et al. [122]). This is why bfloat16 is designed to prevent this problem by

trading off bits in the significand.

The tfloat32 arithmetic opts not to compromise between fp16 and bfloat16 by having a

total of 19 bits. It provides the same range as bfloat16 and the same accuracy as fp16 but is

twice as slow as fp16 and bfloat16 on NVIDIA GPUs. With the newest fp8 arithmetics (E4M3

and E5M2) that present extremely narrow ranges and low accuracies, the previous issues

are even more exacerbated, and leveraging the power of these arithmetics in scientific

computing applications will be a serious challenge.

It is important to clarify that the low precisions are not uniformly accessible across the

processing units and the memories. In particular, they are generally developed and avail-

able on accelerators (e.g., NVIDIA and AMD GPUs or Google’s TPUs); sometimes, they are

even only available through specific units of these accelerators (e.g., tfloat32 and fp8 are

only on NVIDIA GPU’s tensor cores). On the other hand, most of the CPUs in supercomput-

ers nowadays cannot target precision lower than fp32, so the use of low precisions on these

units is relatively limited for now. Consequently, the choice of precisions in an algorithm is

intrinsically linked to the hardware used to run this algorithm, where the hardware used is

also highly dependent on the ability of the algorithm to leverage efficiently its computing

power.

2.1.3.3 Mixed precision. The goal of present-day mixed precision strategies is to fix the loss

of accuracy issue of the low precisions while trying to keep their computational benefits as

much as possible. It can be made by observing that not all operations contribute equally to

the final accuracy of the solution. Thus, if we can identify inexpensive essential parts of the

computation that, if done in high precisions, can recover or preserve the accuracy of the

solution, it may be possible to run the high resource-demanding parts of the computations

in low precisions without damaging much the quality of the solution. As several different

precisions are in play, we call such an algorithm a mixed precision algorithm.

Mixed precision algorithms began to flourish in the 2000s when IEEE fp32 single pre-

cision computations became effectively at least two times faster than IEEE fp64 double

precision ones, the article of Langou et al. [137] is a well-known first representative of this

period. In particular, the recent developments around the half fp16/bfloat16/tfloat32 pre-



12 2.1. FLOATING-POINT ARITHMETIC

cisions (and the quarter fp8 E4M3/E5M2 precisions) stimulated even more research in the

area. This is why a large amount of effort has been produced on the topic in recent years.

The excellent surveys of Higham and Mary [120], Abdelfattah et al. [3] cover most of them.

A mixed precision algorithm can have different forms: it can be about doing some compu-

tations in one or several other different precisions (e.g., Carson and Higham [45], Gratton

et al. [96]); but it can also be about storing and accessing some data in another precision

(e.g., Anzt et al. [24], Göbel et al. [86]); or using pieces of hardware that are using internally

different precisions (e.g., Haidar et al. [103], Lopez and Mary [153]with GPU tensor cores).

Elaborating mixed precision algorithms requires two main components. First, we need

to identify the operations of an algorithm that could run in low or high precisions through

rounding error analysis. Second, we need to face implementation questions to effectively

leverage low precision advantages, such as availability of the precisions (in hardware and

software), copies and access of data in different precisions, or overflow and underflow. Both

of these components will be explored in this manuscript.

We now provide some vocabulary around mixed precision that we will often use in this

manuscript.

By working precision we mean the precision at which the computed solution will be

handed back to the user. It often implicitly means that we target a computed solution

in working accuracy, so if the working precision is fp64, we expect the forward error and

backward error to be a function of the unit roundoff of the fp64 precision. In the case of the

solution of (1.1), it means a residual of order 10−16 (i.e., the fp64 unit roundoff) or at least

smaller/better than 10−8 (i.e., the fp32 unit roundoff). From this definition, we consider

that a low precision in a given algorithm is a precision using fewer bits than the working

precision. Note that in the literature, its precise meaning might depend on the context and

might differ from this definition.

In general, when we present and study a mixed precision algorithm, the different preci-

sions are unspecified independent parameters. Therefore, we refer to a fixed specified set

of these precisions as a combination of precisions. For instance, if the algorithm has two

independent precisions u1 and u2, then (u1 = D, u2 = S) is a combination of precisions of

this algorithm.

We say a combination of precisions in an algorithm is meaningful if none of the pre-

cisions it employs can be reduced without degrading the numerical properties (e.g., con-

vergence or accuracy). For example, if we consider an algorithm with two independent

precisions u1 and u2, if switching u1 from fp64 to fp32 with u2 fixed provides the same nu-

merical properties, u1 in fp64 is considered not meaningful. The sense of “meaningfulness”

is to always prefer the use of low precisions over high precisions. It should be noted that

this concept does not take more hardware or computer properties into account. Instead,

it is purely numerical and serves as a first filter to discriminate potential combinations of

interest. It means that a meaningful combination of precision is not necessarily relevant

in a given applicative context, and further filtering with practical constraints should be

considered.



2. BACKGROUND 13

2.1.4 Rounding error analysis notations

The inexact representation of the numbers and the related inexact computations lead to

intrinsic rounding errors and their potential accumulation throughout the algorithm. In

some cases, the final output can be hugely affected and distant from the solution we would

obtain with exact arithmetic. To better understand the impact of these errors and the role

of each precision in a mixed precision algorithm, an essential part of the work presented

in this manuscript is about carrying rounding errors analyses on particular algorithms of

interest. We now list the tools, notions, and notations that will be used in that regard.

It is fundamental to quantify the quality of a certain computed solution bx of the linear

system (1.1). We can use two measurements to define the accuracy of bx . The first is the

forward error (or relative error) evaluated as ∥x − bx∥/∥x∥; this is a measure of the distance

between the computed solution bx and the exact solution x . Naturally, in a practical context,

x is unknown, and the forward error is not directly computable. The second is the backward

error which quantifies how much we should perturb the linear system for the computed

solution bx to be the actual exact solution of this perturbed system. The backward error

of (1.1) can therefore be defined as a measure of the smallest perturbations ∆A and ∆b

such that (A+∆A)bx = b +∆b . To measure it, we use the normwise relative formulation of

Rigal and Gaches [179]:

min{ε : (A+∆A)bx = b +∆b , ∥∆A∥ ≤ ε∥A∥, ∥∆b ∥ ≤ ε∥b ∥}=
∥b −Abx∥

∥A∥∥bx∥+ ∥b ∥
. (2.5)

We will consider an algorithm for solving (1.1) normwise backward stable if, for any A and b ,

it is guaranteed to produce a small backward error (2.5). In our context, what we mean by

“small” is a backward error of order the unit roundoff of the precision used by the algorithm.

When the algorithm is in mixed precision, then, by small, we mean a backward error of

order the unit roundoff of the working precision. Also, in this manuscript, when we just

refer to the “stability” of an algorithm, we often mean the normwise backward stability of

this algorithm.

Another fundamental quantity is the condition number or conditioning of (1.1). It car-

ries the sensitivity of the solution to perturbations in the data; thus, the higher the con-

dition number, the more we will generate a high relative error on the computed solution

of (1.1). Different measures of the condition number exist; we will use the following in this

manuscript. For a given nonsingular square matrix A ∈Rn×n , we define the componentwise

condition numbers

cond(A, x ) =
∥|A−1||A||x |∥
∥x∥

, cond(A) = ∥|A−1||A|∥, (2.6)

where |A|= (|ai j |), and we define the normwise condition number as κ(A) = ∥A−1∥∥A∥. The

matrix A is called well-conditioned if its condition number is small or ill-conditioned if it is

large. What is small or large depends on the context. For a non-square matrix A ∈Rm×n , if

we note its pseudoinverse A†, we define its normwise condition number as κ(A) = ∥A†∥∥A∥.
Note that by definition the backward error of a computed solution bx of (1.1) is always



14 2.1. FLOATING-POINT ARITHMETIC

smaller than the forward error, we have the following relation between the two

∥b −Abx∥
∥A∥∥x∥+ ∥b ∥

≤
∥x − bx∥
∥x∥

≤ κ(A)
∥b −Abx∥
∥A∥∥x∥

. (2.7)

As different floating-point arithmetics can be used in the same algorithm, we use a sub-

script on the unit roundoff notation to differentiate them; for example, u f . The working

precision is the only precision that does not have a subscript and is simply noted u . More-

over, for convenience, we will abusively use the notation u to refer to both the floating-point

arithmetic and its unit roundoff, depending on the context.

For any integer k we define

γk =
k u

1−k u
. (2.8)

A superscript on γ denotes that u carries that superscript as a subscript; thus γ
f
k = k u f /(1−

k u f ), for example. We also use the notation eγk = γc k to hide modest constants c .

The error bounds obtained by our different analyses depend on different constants of

the problem, such as its dimension n or the number of iterations in the iterative solver (if

used). We will gather these constants into a generic function f (·) in parts of the analyses. In

our algorithms, the constants depending on n are known to be pessimistic (Connolly et al.

[50], Higham and Mary [117; 118]), as are the other constants that will be gathered in f (·).
Therefore, for the sake of readability, we do not always keep track of the precise value of

f (·). When we drop constants f (·) from an inequality, we write the inequality using “≪”. A

convergence condition expressed as “κ(A)≪ θ ” can be read as “κ(A) is sufficiently less than

θ ”. Finally, we also use the notation ≲ and ≈when dropping negligible second order terms

in the error bounds; we note that what makes a second order term negligible depends on

the local context: for example, the term u 2
f is not necessarily negligible in the expression

u + u 2
f for arbitrary precisions u and u f , but can be safely dropped from the expression

u f +u 2
f .

We will also use the notation ≡, which means that we can take the quantity on the left,

which is in our control and is not fixed, to be equal to the quantity on the right.

Our error analyses use different matrix norms for A ∈Rm×n : the∞-norm, the Frobenius

norm, and the 2-norm defined respectively as

∥A∥∞ = max
1≤i≤m

n
∑

j

|ai , j |, ∥A∥F =

√

√

√

√

n
∑

i , j=1

|ai , j |2, and ∥A∥2 =σmax(A), (2.9)

whereσmax is the largest singular value of matrix A. These norms are equivalent and satisfy

the following inequalities

∥A∥2 ≤ ∥A∥F ≤
p

rank(A)∥A∥2, (2.10a)

1
p

m
∥A∥F ≤ ∥A∥∞ ≤

p
n∥A∥F , (2.10b)

1
p

n
∥A∥∞ ≤ ∥A∥2 ≤

p
m∥A∥∞. (2.10c)



2. BACKGROUND 15

In addition, we write κ∞(A), κF (A), and κ2(A) the corresponding condition numbers of A

based on these respective norms. We will use unsubscripted norms or condition numbers

when the constants depending on the problem dimensions have been dropped since the

norms are equivalent.

We denote by p the maximum number of nonzeros in any row of [A b ], A, and b from

(1.1); thus p = n +1 for a dense matrix A and a vector b .

This manuscript summarizes the results of rounding error analyses into theorems. In

general, they will guarantee bounds on the errors of the computed solution, sometimes

under some conditions. As an example, in Theorem 2.1, we present a fundamental result of

the rounding error analysis of the classic matrix–vector product kernel y = Ax computed

in precision u .

Theorem 2.1 (From [114, eq. (3.11)]). Given a matrix A ∈ Rm×n and a vector x ∈ Rm , the

computed matrix–vector product satisfies

by = (A+∆A)x , |∆A| ≤ γn |A|. (2.11)

Due to rounding errors, the computed by is not exactly Ax but is rather (A +∆A)x where

∆A is a perturbation or error. The theorem ensures that the entries of∆A are bounded by

the unit roundoff of the precision u , the dimension of the problem n , and the entries of A if

the computation satisfies the standard error model (2.4), which is an implicit assumption

all over this manuscript. Furthermore, as we can consider the constant in n pessimistic,

this theorem shows that the error∆A will stay relatively small compared with the entries

of A, where small is defined by the unit roundoff of the precision used.

2.2 Direct solvers
A direct solver for the solution of the general square linear system (1.1) is a solver that re-

duces the problem to a sequence of systems that are easy to solve (e.g., triangular system).

Direct solvers are often considered robust and easy to use because they can achieve back-

ward stability with the addition of some techniques (e.g., good pivoting strategies), their

performance is not affected by the spectral properties of the matrix, and their resource con-

sumption is predictable. The main downsides of direct solvers are the high computational

cost and memory consumption they require, particularly for the solution of sparse linear

systems.

A big part of the work presented in this manuscript is interested in addressing these

weaknesses by the use of mixed precision with a specific focus on the sparse case. Therefore,

in this section, we recall the essential elements of background on dense and sparse direct

solvers that are needed to carry out the different rounding error and performance analyses.

More specifically, we mainly focus on the LU direct solver (and to some extent the QR one)

on which we recall some classic rounding error stability results in sections 2.2.1 and 2.2.2.

Then, we present the multifrontal sparse direct solver and some of its popular numerical

approximation techniques that we will use for the parallel solution of large sparse linear

systems on supercomputers in sections 2.2.3 and 2.2.4.



16 2.2. DIRECT SOLVERS

2.2.1 LU solver

2.2.1.1 Gaussian elimination and LU factorization. Gaussian Elimination (GE) is the pro-

cess of transforming (1.1) into a simpler triangular linear system. There are n−1 steps begin-

ning with A(1) = A and b (1) = b and finishing with the upper triangular system A(n )x = b (n ),

where we build iterate A(k ) and b (k ) by

a (k+1)
i , j = a (k )i , j − ℓi ,k a (k )k , j , i = k +1 : n , j = k +1 : n , (2.12)

b (k+1)
i = b (k )i − ℓi ,k b (k )k , i = k +1 : n , (2.13)

with ℓi ,k = a (k )i ,k/a
(k )
k ,k . We call step k the elimination of the k th variable and a (k )k ,k a pivot.

The LU direct solver is just the matrix formulation of Gaussian Elimination (GE) for

general square linear system. It is about expressing A as a product of a unit lower triangular

matrix L and an upper triangular matrix U such that A = LU and where

L =























1

ℓ2,1
...

1
... ℓk+1,k

...
...

...

ℓn ,1 ℓn ,k 1























, U = A(n ). (2.14)

L and U are called the factors of A, and the process of computing them is called the factor-

ization. Computing the solution x of (1.1) is then done in two stages,

L y = b (forward substitution), (2.15)

U x = y (backward substitution), (2.16)

that we call the solve. For a dense system, the computation of the factorization requires

O (n 3) flops while the solve requires O (n 2) flops. Moreover, the LU direct solver stores O (n 2)
entries in memory if the factorization is done in-place; that is, A is overwritten, its lower

triangular part is replaced by L and its upper triangular part by U .

Algorithms 2.1 and 2.2 described the dense point LU factorization and solve. At each

step k of the factorization, a new column of L and a new row of U are computed in-place.

Note that the diagonal of L is not explicitly stored since lk ,k = 1 for all 1 ≤ k ≤ n . This

algorithm is referred to as “point” because the operations are performed on single matrix

entries. It can be reorganized to be performed on blocks of entries instead; it significantly

improves the performance due to the better data locality.

Algorithm 2.3 is a form of blocked LU factorization that we call dense tile LU factor-

ization. This algorithm partitions the matrix A into blocks or tiles stored contiguously in

memory; for example, we can partition the matrix A with uniform tiles of size b ≪ n com-

posed of p = n/b tiles on each row and column. In particular, expressing the problem this

way brings more concurrency between the operations that can be efficiently parallelized



2. BACKGROUND 17

Algorithm 2.1 Dense point LU factorization (without pivoting)

Input: a p ×p block matrix A of order n .
Output: its computed LU factors.

1: for k = 1 : n −1 do
2: ak+1:n ,k ← ak+1:n ,k/ak ,k

3: ak+1:n ,k+1:n ← ak+1:n ,k+1:n −ak+1:n ,k ak ,k+1:n

4: end for

Algorithm 2.2 Dense forward substitution (left) and backward substitution (right)

Input: a n ×n unit lower triangular matrix
L and a right-hand side b .

Output: a computed solution to L y = b .
1: y ← b
2: for k = 1 : n do
3:

4: for i = k +1 : n do
5: yi ← li ,k yk

6: end for
7: end for

Input: a n × n upper triangular matrix U
and a right-hand side y .

Output: a computed solution to U x = y .
1: x ← y
2: for i = n −1 :−1 : 1 do
3: for k = i +1 : n do
4: xi ← ui ,k xk

5: end for
6: xi ← xi /ui ,i

7: end for

through task-based multithreading. As the computational performance of the dense LU

direct solver is not the concern of this manuscript, we refer the reader to the work of Buttari

et al. [43], Quintana-Ortí et al. [178] for more information on efficient parallel implemen-

tations of tile LU factorization. Note that we refer to this algorithm as “left-looking” to be

consistent with the studies we base our contributions on while acknowledging that this is

actually a “Crout” variant.

Algorithm 2.3 performs the factorization of a p ×p tiled matrix A by applying the fol-

lowing three steps at each iteration k for the elimination of the k th row and column of

the tiled matrix: we update the k th row and column with the already computed rows and

columns, we factor the diagonal tile Ak ,k , and finally, we use the computed factors to apply

the different triangular solves on the remaining of the k th row and column to finish the

elimination. These three steps are represented by Figure 2.2.

2.2.1.2 Stability. Naturally, the presence of rounding errors will affect the quality of the

computed solution bx by the LU direct solver. Higham [114, chap. 9] provides fundamental

results that we recall below on the numerical stability of the LU direct solver.

Theorem 2.2 (From [114, thm. 9.3]). If GE applied to A ∈Rm×n (m ≥ n) in precision u runs

to completion, then the computed LU factors bL ∈Rm×n and ÒU ∈Rn×n satisfy

bLÒU = A+∆A, |∆A| ≤ γn |bL ||ÒU |. (2.17)

Theorem 2.3 (From [114, thm. 8.5]). Let the triangular system T x = b , where T ∈Rn×n is

nonsingular, be solved by backward or forward substitution. Then the computed solution bx



18 2.2. DIRECT SOLVERS

Algorithm 2.3 Dense tile LU (left-looking) factorization (without pivoting)

Input: a p ×p block matrix A of order n .
Output: its computed LU factors.

1: for k = 1 : p do
2: U P D A T E :
3: Ak ,k ← Ak ,k −

∑k−1
j=1 Lk , j Uj ,k .

4: for i = k +1 to p do
5: Ai ,k ← Ai ,k −

∑k−1
j=1 L i , j Uj ,k and Ak ,i ← Ak ,i −

∑k−1
j=1 Lk , j Uj ,i .

6: end for
7: FA C T O R :
8: Compute the LU factorization Lk ,kUk ,k = Ak ,k .
9: S O LV E :

10: for i = k +1 : p do
11: Solve L i ,kUk ,k = Ai ,k for L i ,k and Lk ,kUk ,i = Ak ,i for Uk ,i .
12: end for
13: end for

(a) Update. (b) Factor. (c) Solve.

Figure 2.2: Dense tile LU (left-looking) factorization.

satisfies

(T +∆T )bx = b , |∆T | ≤ γn |T |. (2.18)

Theorem 2.4 (From [114, thm. 9.4]). Let A ∈Rn×n and suppose GE applied in precision u

produces computed LU factors bL, ÒU , and a computed solution bx to Ax = b . Then

(A+∆A)bx = b , |∆A| ≤ γ3n |bL ||ÒU |. (2.19)

What follows from (2.17) and (2.19) is that the size of the error is determined by |bL ||ÒU |
rather than |A|, and unfortunately, the ratio ∥|L ||U |∥/∥A∥ can be arbitrarily large. This is

why GE is not guaranteed to be stable. This instability can be quantified by a term that is

called the growth factor and which is defined classically as

ρn =
maxi , j ,k |a

(k )
i , j |

maxi , j |ai , j |
. (2.20)

We can now express the error on the computed solution in terms of A and the growth factor.



2. BACKGROUND 19

Theorem 2.5 (From [114, lem. 9.6]). If A = LU ∈Rn×n is an LU factorization produced by

GE applied in precision u without pivoting then

∥|L ||U |∥∞ ≤ (1+2(n 2−n )ρn )∥A∥∞. (2.21)

Theorem 2.6 (From Wilkinson, written in [114, thm. 9.5]). Let A ∈ Rn×n and suppose GE

applied in precision u produces a computed solution bx to Ax = b . Then

(A+∆A)bx = b , ∥∆A∥∞ ≤ n 2γ3nρn∥A∥∞. (2.22)

In order to make GE more stable and to avoid division by zero in (2.12) and (2.13) that

would break the whole computation, it is almost mandatory to adopt a pivoting strategy

during the factorization. The philosophy of numerical pivoting in GE is to permute the

entries in A such that we generate small entries |a (k+1)
i , j | in (2.12). It would limit the growth

factor and reduce the error generated on the computed solution. A standard strategy to do

so is partial pivoting which, at the k th step of GE, interchanges the k th row with the r th

row, where r is picked such that the new pivot |a (k )r,k | is the maximum of the pivotal column

(|a (k )i ,k |)k≤i≤n , that is,

r ≡ arg max
k≤i≤n

|a (k )i ,k |. (2.23)

We name this variant Gaussian Elimination with Partial Pivoting (GEPP). GEPP guarantees

that the entries in L are bounded by 1, meaning that for all 1≤ j ≤ i ≤ n we have |ℓi , j | ≤ 1,

and that the growth factor is bounded by ρn ≤ 2n−1. It is actually possible to build some

classes of matrices where this upper bound on ρn for GEPP is attained; however, as stated

by Higham [114, sect. 9.4]: “Despite the existence of matrices for which ρn is large with

partial pivoting, the growth factor is almost invariably small in practice”. This is why we will

consider that the growth factor is of order a constant in our different analyses using partial

pivoting.

Using Theorem 2.6, we can bound the forward error of the LU direct solver by

∥x − bx∥∞
∥x∥∞

≤ n 2γ3nρnκ∞(A), (2.24)

where we can observe a dependence on the condition number of A. Thus, the more A is

ill-conditioned, the more the computed solution bx obtained by GEPP can differ from the

true solution x . The backward error does not depend on κ(A) and, from (2.7), is expected

to be smaller than the forward error.

2.2.1.3 LDLT and LLT solvers. For the symmetric case, we factorize the matrix A as LD L T ,

where L is a unit lower triangular matrix and D is diagonal. In addition, when A is positive

definite, we can use an even simpler decomposition L L T referred to as the Cholesky factor-

ization, where L is not unit anymore. Exploiting the symmetry by using LDLT or LLT solver

allows storing half the number of entries for the factors and doing half the number of flops

during the factorization in comparison to the LU solver.

We will always use the LU factorization for the rounding error analyses in this manuscript.



20 2.2. DIRECT SOLVERS

However, the results can be straightforwardly extended to LDLT or LLT factorization where

we have equivalence for Theorems 2.2 and 2.4 to 2.6 in Higham [114, chap. 10 and 11].

2.2.2 Least squares problem and QR solver

2.2.2.1 Least squares with QR factorization. Even though computing the solution of the

least squares (LS) problem is not the main focus of this manuscript, we will still discuss it

because the methods we present for the solution of square linear systems can be naturally

extended for this use case.

Let us consider the least squares problem

r =min
x
∥b −Ax∥2, (2.25)

where A ∈ Rm×n (m ≥ n) has full rank and b ∈ Rm . This problem can be seen as the ap-

proximation of the solution of an overdetermined system and is used in a wide range of

applications from statistical regression, optimal control, or image processing, to cite a few.

The solution of the least squares problem (2.25) satisfies the normal equations

AT Ax = AT b , (2.26)

which has a unique solution since A is supposed to have full rank. Solving the system (2.26)

directly by applying a Cholesky factorization on AT A presents some numerical issues since

the bound (2.24) on the forward error of the computed solution of (2.26) would be a function

of κ2(AT A) = κ2(A)2. Instead, a more stable way to solve (2.26) is to use the QR factorization

of A

A =Q

�

R

0

�

≡QU , (2.27)

where Q =
�

Q1,Q2

�

∈ Rm×m is an orthogonal matrix with Q1 ∈ Rm×n , Q2 ∈ Rm×(m−n ), and

R ∈Rn×n is upper triangular. The solution can be then expressed as x =R−1Q T
1 b .

2.2.2.2 Stability. We have the following results on the accuracy of the computed QR factors

and the computed LS solution by QR factorization from Higham [114, chap. 19 and 20].

Theorem 2.7 (From [114, eq. 19.13]). Let A ∈Rm×n (m ≥ n ) have full rank. The computed

Q factor by the Householder QR factorization method in precision u satisfies

∥ÒQ −Q∥F ≤
p

neγmn (2.28)

Theorem 2.8 (From [114, thm. 19.4] (weak form)). If the Householder QR algorithm applied

to A ∈ Rm×n (m ≥ n ) in precision u runs to completion then the computed QR factors ÒQ ∈
Rm×m and ÒU ∈Rm×n satisfy

ÒQ ÒU = A+∆A, ∥∆A∥F ≤
p

neγmn∥A∥F . (2.29)



2. BACKGROUND 21

Theorem 2.9 (From [114, thm. 20.3] (weak form)). Let A ∈Rm×n (m ≥ n ) have full rank and

suppose the LS problem (2.25) is solved using the Householder QR factorization method in

precision u. The computed solution bx is the exact LS solution to

min
x
∥(b +∆b )− (A+∆A)bx∥2, ∥∆A∥F ≤ eγmn∥A∥F , ∥b ∥2 ≤ eγmn∥b ∥2. (2.30)

In addition, from Higham [114, sect. 20.2], the accuracy on the computed minimal resid-

ual br =minx ∥b −Abx∥2 obtained by QR factorization in working precision u satisfies

∥br − r ∥2 ≲meγmn (∥|b |+ |A||x |∥2+ cond2(A
T )∥r ∥2), (2.31)

∥br ∥2 ≲meγmn∥|b |+ |A||x |∥2+ (1+meγmn cond2(A
T ))∥r ∥2. (2.32)

2.2.3 The multifrontal sparse direct solver
Among the different approaches to solve sparse linear systems directly, we will focus in this

work on the multifrontal sparse direct solver method (see Schreiber [187], Duff and Reid

[69; 70], Liu [150]). Even though most of our conclusions apply to any kind of sparse solver,

some results will be specific to the multifrontal approach. We do not cover the method in

detail; instead, we provide the main information needed for the proper understanding of

this manuscript. More complete descriptions of the method can be found in the books of

Duff et al. [72], Davis [54] and in the theses of L’Excellent [141], Mary [159], Buttari [40].

2.2.3.1 Handling sparsity. When the matrix A is sparse, that is, when there are few interac-

tions between the variables leading to a matrix with mostly zero entries, additional chal-

lenges arise for the direct solution of (1.1). Mainly, the algorithms and the data structures

need to take advantage of the structural sparsity by performing the computations only on

the nonzeros entries carrying the problem’s relevant information. In Figure 2.3a, we repre-

sent a 9× 9 sparse matrix where each row and column is associated with a variable from

one to nine and where the gray boxes are the nonzeros entries.

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

(a) Sparse matrix

1 2 4 5

3 6

7

8

9

(b) Elimination tree

Figure 2.3: On the left, a sparse matrix representing a linear system with nine variables.
A gray box corresponds to a nonzero entry in the matrix (i.e., an interaction between two
variables). On the right, the associated elimination tree.



22 2.2. DIRECT SOLVERS

A key consequence of the structural sparsity of (1.1) is that the elimination of the k th

variable (2.12) by GE will not necessarily affect all the remaining (k +1)th, ..., nth rows and

columns. For instance, the elimination of variable 1 of matrix 2.3a only affects rows and

columns associated with variables 3 and 7 because from (2.12) we need both ai ,1 ≠ 0 and

a1, j ̸= 0 for the entry a (2)i , j (i > 1 and j > 1) to be updated. We call contributions of variable

k to variable ℓ the updates on the ℓth row and column that occur during the elimination

of variable k . Hence, back to our example, we cannot eliminate variable 3 before having

computed the contributions of variable 1, but we can eliminate variable 2 because variable

1 does not have any contributions to variable 2.

The dependencies between the elimination of each variable can be expressed in a com-

pact form without redundancy by the elimination tree (Schreiber [187]). For example, the

elimination tree of matrix 2.3a is represented in Figure 2.3b, where node k corresponds to

the elimination of the k th variable. The factorization can then be performed by computing

all eliminations through a bottom-up traversal of the tree, that is, from leaves to root. The

elimination tree is a fundamental structure in sparse direct solvers because it contains the

order in which the variables must be eliminated, and it expresses exploitable parallelism

by telling which variables can be eliminated concurrently.

Once the factors are computed, the elimination tree can also serve for the solve phase:

the forward substitution is computed through a bottom-up traversal of the tree, and the

backward substitution is computed through a top-down traversal, that is, from root to

leaves.

2.2.3.2 Fill-in. The fill-in of a sparse factorization is the phenomenon by which the entry

a (k )i , j can become a nonzero entry even if ai , j is zero. This occurs when a (k )i ,k and a (k )k , j are

nonzeros for some k in (2.12). Thus, the factors of A are denser than A itself. As the fill-in

can severely increase the computational cost and the memory consumption of the sparse

direct solver, reducing it is critical. In Figure 2.4, we display in red the new nonzeros entries

that are generated by GE during the factorization of the sparse matrix in Figure 2.3a.

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

Figure 2.4: Fill-in after factorization of the sparse matrix of Figure 2.3a. A red box corre-
sponds to a new entry in the factors.

The order in which the variables are eliminated in (1.1), or the ordering, has a significant



2. BACKGROUND 23

impact on the fill-in. We can change this order by permuting rows and columns in A such

that variable 1 might be eliminated after variable 3 (say). Unfortunately, finding the ordering

that minimizes the fill-in is an NP-complete problem as demonstrated by Yannakakis [216],
and we can only use heuristics to limit it. Some are based on the use of local information

on the variables (e.g., Liu [149], Amestoy et al. [11], Rothberg and Eisenstat [180], Ng and

Raghavan [164]), or some apply global partitioning strategies on the variables (e.g., George

[80]). For the experiments of this manuscript, we use the METIS library (Karypis and Kumar

[134]) for the ordering which adopts a hybrid strategy using both global and local heuristics.

2.2.3.3 Analysis phase. To exploit the structural sparsity, sparse direct solvers require an

analysis phase done prior to the factorization and the solve. This phase has two primary

roles. First, it should preprocess the operations to improve the solver’s performance. It in-

cludes, in particular, computing an ordering to limit the fill-in (see previous section 2.2.3.2).

Second, it should perform the symbolic factorization simulating the eliminations to predict

the fill-in and determine the elimination tree. Based on this information, the solver can

allocate and prepare the different structures necessary for the factorization, distribute the

workload, and proceed to other operations meant to prepare and optimize the factoriza-

tion.

The analysis does not make use of the values of the nonzero entries in A and is essen-

tially composed of symbolic operations. Thus, in our context, it means that this part of the

sparse direct solver cannot be accelerated through low precisions, and only the factoriza-

tion and the solve phases are potentially concerned by mixed precision improvements.

2.2.3.4 The multifrontal method. We distinguish three main classes of sparse direct solvers,

all scheduling differently the computation and the application of the contributions; we

represent them in Figure 2.5.

• In the right-looking approach (Figure 2.5a), the contributions of variable 7 to vari-

ables 8 and 9 are computed and applied right after the elimination of variable 7; they

are computed as soon as possible.

• In the left-looking approach (Figure 2.5b), the contributions of variables 1, 3, 4, and

6 to variable 7 are computed and applied when we eliminate variable 7; they are

computed as late as possible.

• In the multifrontal approach (Figure 2.5c), the contributions of variables 1, 3, 4, and 6

to variable 7 are computed as soon as possible but not applied immediately. Instead,

the contribution of variable 1 to variable 7 is computed during its elimination, carried

along during the elimination of variable 3, and applied when it is time to eliminate

variable 7.

In the multifrontal sparse direct solver, we associate with each node in the elimina-

tion tree a dense matrix called a frontal matrix (or front) on which a partial factorization

is performed. It yields both the elimination of the variable and the computation of all its

contributions. For example, the partial factorization on node 7 in the tree 2.5c eliminates



24 2.2. DIRECT SOLVERS

1 2 4 5

3 6

7

8

9

(a) Right-looking approach

1 2 4 5

3 6

7

8

9

(b) Left-looking approach

1 2 4 5

3 6

7

8

9

(c) Multifrontal approach

Figure 2.5: Right-looking, left-looking, and multifrontal approaches. The red arrows repre-
sent the different contributions sent when variable 7 is eliminated.

variable 7 by computing the associated row and column in the factors L and U and com-

putes all its contributions to variables 8 and 9 in the form of a Schur complement.

Variables with columns having the same structures can be grouped together in the same

frontal matrix of the elimination tree and can be eliminated at once. This process is called

amalgamation; it further transforms the elimination tree in an assembly tree illustrated by

Figure 2.6. The sparse factorization of the multifrontal solver is therefore expressed as a

sequence of efficient BLAS 3 partial dense factorizations whose dependencies are described

by the tree structure. In Figure 2.6, the red parts are the computed factors entries, and the

green parts are the temporary contribution blocks carried over the tree. This temporary

data is called the active memory. Due to this active memory, the peak memory consumption

of the multifrontal factorization is higher than the factors in memory; we call the difference

between the two the active memory overhead.

Figure 2.6: An example of an assembly tree of a multifrontal factorization.

The right- and left-looking approaches (Figures 2.5a and 2.5b) are generally referred

to as supernodal methods. Even though this manuscript is focused on the multifrontal



2. BACKGROUND 25

method, most of the conclusions related to its improvement with mixed precision apply

to supernodal methods as well. However, there will be one significant difference related

to memory consumption. Because the supernodal methods do not need to carry the con-

tributions over the tree, they do not generate as much temporary data as the multifrontal

method and, specifically, do not have active memory. Necessarily, any improvement related

to reducing the active memory consumption will not concern supernodal methods.

2.2.3.5 Operational complexity. George [80] showed that it is possible to derive complexi-

ties for linear systems arising from a discretization on a regular grid when the nested dis-

section ordering is applied. We call d the dimension of the regular grid and N the number

of points on each dimension of the grid (e.g., for a 2D grid d = 2 and the total number of

points is n =N 2, for a 3D grid d = 3 and n =N 3).

Nested dissection is an ordering where the l th level of the elimination tree contains

(2d )l frontal matrices of dimension ml = (N /2l )d−1. Since every partial factorization of

the fronts is of order O (m 3
l ) flops and the fronts have O (m 2

l ) entries, the total number of

flops of the sparse factorization, the solve, and the number of entries in the factors can be

determined. We display these different complexities in Table 2.2.

Table 2.2: Theoretical complexities in flops and memory of the multifrontal solver for sparse
problems coming from 2D and 3D regular grids.

Flops factorization Flops solve Entries in LU

Dense O (n 3) O (n 2) O (n 2)
2D O (n 3/2) O (n log n ) O (n log n )
3D O (n 2) O (n 4/3) O (n 4/3)

For 3D problems the ratio between the flops complexities of the factorization and the

solve operations is n 2/3, whereas for 2D problems it is
p

n/ log n . A resulting effect of this

is that the solve operation is, relative to the factorization, less costly in 3D than in 2D. This

difference has some consequences on algorithms that require the application of multiple

solves from one factorization; in particular, it concerns the iterative refinement algorithm

that we are interested in (see chapter 4).

2.2.3.6 Exploiting parallelism. In a multifrontal solver, we have two sources of parallelism.

The structure of the assembly tree offers high-level parallelism which lets us process con-

currently different partial dense factorizations of the tree at the same time; we call this tree

parallelism. On the other hand, we can also parallelize the partial dense factorization of

a given front; we call this node parallelism. We face two issues when exploiting these two

kinds of parallelism. Tree parallelism decreases near the root, whereas node parallelism

generally increases because frontal matrices tend to be bigger. Conversely, tree parallelism

increases near the leaves, and node parallelism becomes less efficient because the fronts

tend to be smaller.

In the case of the multifrontal sparse direct solver, increasing the tree parallelism will

increase the number of contribution blocks stored concurrently in memory. It can there-



26 2.2. DIRECT SOLVERS

fore increase the active memory overhead and, so, the global memory consumption of the

factorization.

2.2.3.7 Pivoting in sparse solvers. In the case of unsymmetric or symmetric indefinite prob-

lems, pivoting must be used to reduce element growth and make the algorithm backward

stable, as stated in section 2.2.1.2. However, pivoting reduces the efficiency and scalability

of the factorization on parallel computers for both dense and sparse systems because it

requires communication and synchronization. In the case of sparse factorizations, pivoting

has the additional drawback of introducing more fill-in. Moreover, because this fill-in de-

pends on the unfolding of the factorization, it cannot be accurately predicted beforehand,

so pivoting requires the use of dynamic data structures and may lead to load unbalance

in a parallel setting. For this reason, few sparse direct solvers employ robust pivoting tech-

niques such as partial pivoting. Although the overhead imposed by pivoting can be modest

in many cases, when targeting large scale parallel computers and/or numerically difficult

problems, performance may be severely affected.

This is why more scalable pivoting strategies are often employed in sparse direct solvers

that meet different trade-offs between robustness and computation efficiency. For instance,

threshold partial pivoting, proposed by Duff et al. [72], relaxed the choice of pivot by ac-

cepting pivot a (k )r,k slightly lower than the maximum of the pivotal column (|a (k )i ,k |)k≤i≤n . We

accept a (k )r,k with k ≤ r ≤ n if

|a (k )r,k | ≥τp max
k≤i≤n

|a (k )i ,k |, (2.33)

for a certain threshold τp ≤ 1. Another example is static pivoting proposed by Li and Dem-

mel [143] that we will further review in section 2.2.4.2.

The drawbacks of these techniques are that they cannot generally guarantee the back-

ward stability of the direct solver as for partial pivoting and can worsen the accuracy of the

solution.

2.2.3.8 Software. For our different experiments with the multifrontal sparse direct solver,

we rely on the MUltifrontal Massively Parallel sparse direct Solver (MUMPS) package (Amestoy

et al. [12]) for the solution of unsymmetric, symmetric positive definite, or general sym-

metric linear system of equations, exploiting both MPI and OpenMP parallelization on

distributed memory computers.

However, many other sparse direct solvers are available. For example, UMFPACK (Davis

[53]) and WSMP (Gupta [99]) are other implementations of the multifrontal method. Su-

perLU (Li and Demmel [144]) and its variants SuperLU_MT and SuperLU_DIST designed

for sequential shared memory and distributed memory systems, PaStiX (Hénon et al. [107]),

and PARDISO (Schenk et al. [186]) are implementations of the right- and left-looking meth-

ods.

2.2.4 Numerical approximations in sparse factorization
In order to improve performance and/or reduce complexity, sparse direct solvers often

compute approximate factorizations. By approximate factorization, we refer to techniques



2. BACKGROUND 27

that make a numerical approximation at the algorithm level, independent of any floating-

point arithmetic. We are interested in two approximate factorization techniques in this

manuscript: BLR and static pivoting.

2.2.4.1 Block Low-Rank. In several applications, we can exploit the presence of redundant

or unimportant data, referred to as the data sparsity, by partitioning dense matrices (e.g.,

those appearing in the assembly tree of the multifrontal method, see Figure 2.6) into blocks

of low numerical rank. These blocks can be suitably compressed with a reliably controlled

loss of accuracy, for example, through a truncated SVD decomposition. Sparse direct solvers

exploiting this property to accelerate the computations and reduce memory consumption

have been proposed and shown to be highly effective in a variety of applications (Amestoy

et al. [15], Ghysels et al. [81], Shantsev et al. [188], Pichon et al. [177], Amestoy et al. [17]).

Figure 2.7 offers an illustrative view of how the compression works. We approximate a

given block Bi ∈Rbi×bi , carrying the interactions between the subdomains σ and π, by a

product of rectangular matrices X i Y T
i with an accuracy τb , where X i , Yi ∈Rbi×ki . We call

it a low-rank approximation because Bi is at most of rank bi and X i Y T
i is at most of rank

ki ≤ bi . The weaker the interactions between the subdomains the more the compression

is efficient. If ki ≪ bi , using X i Y T
i instead of Bi reduces flops and memory and can greatly

improve the general performance of the solver.

σ

π

Bi

X i

Y T
i

ρ σ

π

ki ≪ bi

ki ≃ bi

Figure 2.7: Compression by block of a dense matrix. Strong or weak interactions between
subdomains lead to a high- or low-rank block, respectively.

The block low-rank (BLR) format (Amestoy et al. [14; 16; 17]) is based on a flat block

partitioning of the matrix into low-rank blocks as opposed to other formats that employ

hierarchical partitioning. The LU factorization of a BLR matrix can be efficiently computed

by adapting the usual tile LU factorization, represented by Algorithm 2.3, to take advantage

of the low-rank property of the blocks. For a detailed description of the BLR LU factorization

algorithms, we refer to, for example, Amestoy et al. [17] or Mary [159]; in this manuscript,

we specifically use the left-looking UCF+LUA variant described by Amestoy et al. [17] and

represented by Algorithm 2.4. UCF refers to the order in which the different operations

are carried: Update, Compress, and Factor+Solve. The compression of the k th row and

column is made before their elimination; thus, the update and solve steps benefit from the

reduction of the number of operations.



28 2.2. DIRECT SOLVERS

Algorithm 2.4 BLR LU factorization (without pivoting)

Input: a p ×p block matrix A.
Output: its BLR LU factors eL and eU .

1: for k = 1 to p do
2: U P D A T E :
3: Ak ,k ← Ak ,k −

∑k−1
j=1
eLk , j eUj ,k .

4: for i = k +1 to p do
5: Ai ,k ← Ai ,k −

∑k−1
j=1
eL i , j eUj ,k and Ak ,i ← Ak ,i −

∑k−1
j=1
eLk , j eUj ,i .

6: end for
7: C O M P R E S S :
8: for i = k +1 to p do
9: Compute LR approximations eAi ,k ≈ Ai ,k and eAk ,i ≈ Ak ,i .

10: end for
11: FA C T O R+S O LV E :
12: Compute the LU factorization eLk ,k eUk ,k = Ak ,k .
13: for i = k +1 to p do
14: Solve eL i ,k eUk ,k = eAi ,k for eL i ,k and eLk ,k eUk ,i = eAk ,i for eUk ,i .
15: end for
16: end for

Once the partial dense BLR LU factorization is finished, the L and U factors are com-

pressed and the contribution block is still full-rank. In the context of the multifrontal solver,

it is possible to compress the contribution blocks; however, compressing them does not

lead to a global reduction of the flops but instead increases them. It is because, for each

partial factorization, we need to decompress the contributions to apply them before the

elimination and, at the end of the partial factorization, we need to compress the gener-

ated contribution. On the other hand, the communications related to the transfer of the

contribution blocks across processes can be reduced and the active memory consumption

lowered, leading to a global reduction of the memory consumption during the factorization.

The choice of compressing the contribution blocks is therefore made when lower memory

consumption is preferred over reduced execution time.

Amestoy et al. [16] determined the operational complexities of the BLR multifrontal

method. They showed that the complexities are significantly reduced compared with the

ones of the full-rank multifrontal method (see section 2.2.3.5); for example, we can at best

decrease the complexity from O (n 2) flops on a 3D grid to O (n 4/3). The rest of the complexi-

ties are displayed in Table 2.3. The constants hidden in the bigO depend on the ranks of the

blocks. These ranks are determined by a threshold, τb in this manuscript, that controls the

accuracy of the approximations. A larger threshold leads to lower memory and operational

costs but also lower accuracy.

Note that for simplicity, Algorithm 2.4 describes UCF without numerical pivoting. How-

ever, the numerical experiments of this manuscript using the UCF BLR factorization will

use pivoting.

Higham and Mary [119] proved the backward stability of the BLR LU factorization. In

their work, they provided equivalent results as for Theorems 2.2 to 2.4 for the case of the



2. BACKGROUND 29

Table 2.3: Theoretical complexities in flops and memory of the BLR multifrontal solver
for sparse problems coming from 2D and 3D regular grid. The full-rank complexities are
recalled for comparison.

Flops factorization Flops solve Entries in LU

full-rank 2D O (n 3/2) O (n log n ) O (n log n )
BLR 2D O (n log n ) O (n ) O (n )

full-rank 3D O (n 2) O (n 4/3) O (n 4/3)
BLR 3D O (n 4/3) O (n log n ) O (n log n )

BLR LU factorization. We recall their results below and specialize them to the UCF variant.

Theorem 2.10 (From [119, thms. 4.2 and 4.3]). Let A ∈Rn×n be a nonsingular matrix par-

titioned into p 2 blocks of order b . If a UCF algorithm is used and runs to completion, it

produces BLR LU factors of A satisfying

A = bLÒU +∆A, ∥∆A∥F ≤ ( f (p )τb +γp )∥A∥F +γc ∥bL∥F ∥ÒU ∥F +O (uτb ), (2.34)

where c = b +2r 3/2+p , and where f (p ) is a function of p .

Theorem 2.11 (From [119, thm. 4.4]). Let ÒT ∈Rn×n be a triangular BLR matrix partitioned

into p 2 LR blocks ÒTi j ∈Rb×b and let v ∈Rn . If the solution to the system ÒT x = v is computed

by solving the triangular system Ti i xi = vi −
∑i−1

j=1
ÒTi j x j for each block xi = x ((i−1)b +1 : i b ),

the computed solution bx satisfies

(ÒT +∆ÒT )bx = v +∆v, ∥∆ÒT ∥F ≤ γc ∥ÒT ∥F , ∥∆v ∥2 ≤ γp∥v ∥2, (2.35)

where c = b + r 3/2+p .

Theorem 2.12 (From [119, thm. 4.5]). Let bA ∈Rn×n be a p b ×p b BLR matrix and let v ∈Rn .

If the linear system bAx = v is solved by solving the triangular systems bL y = v and ÒU x = y ,

where bL and ÒU are the BLR LU factors computed by the UCF algorithm, then the computed

solution bx satisfies

(A+∆A)bx = v +∆v,

∥∆A∥F ≤ ( f (p )τb +γp )∥A∥F +γ3c ∥bL∥F ∥ÒU ∥F +O (uτb ), (2.36)

∥∆v ∥2 ≤ γp (∥v ∥2+ ∥bL∥F ∥ÒU ∥F ∥bx∥2) +O (u 2),

where c = b +2r 3/2+p , and where f (p ) is a function of p .

A recent extension of this analysis handling the case of mixed precision inside BLR has

been made by Amestoy et al. [10].

2.2.4.2 Static pivoting. Unlike partial pivoting (see section 2.2.1.2), static pivoting, first pro-

posed by Li and Demmel [143], does not apply permutations on the rows or columns of the

sparse matrix. Instead, when a pivot is found to be too small with respect to a prescribed



30 2.3. ITERATIVE SOLVERS

thresholdτs ∥A∥∞ (i.e., if at the k th step |a (k )k ,k |<τs ∥A∥∞), it is replaced withτs ∥A∥∞. How-

ever, with such a strategy, depending on the chosen parameter τs , the growth factor can be

far more important and consequently static pivoting guarantees lower numerical stability.

Actually, static pivoting has a twofold effect on the accuracy and stability of the factoriza-

tion. A small value for τs introduces a smaller error but might lead to a large growth factor,

while a large value controls element growth but reduces the accuracy of the factorization.

However, what is lost in stability is traded for substantial computational improvements.

Indeed, static pivoting improves the use of BLAS 3 operations and improves parallelism

compared with partial pivoting, whose scalability suffers from the communications needed

to identify the pivots at each elimination stage. Moreover, the use of static pivoting in a

sparse direct solver keeps the original ordering and does not introduce additional fill-in as

partial pivoting does (see the last paragraph of section 2.2.3.2). Consequently, static pivoting

is less prone to load unbalance, additional flops, and increased memory consumption.

2.3 Iterative solvers
An iterative solver for the solution of the general square linear system (1.1) is a solver that

computes a sequence x1, x2, . . . , xq converging toward the true solution x . Compared with

direct solvers, iterative solvers generally have a significantly lower computational cost and

memory consumption if the convergence is quick or the iterations are stopped quickly. For

example, considering a sparse problem coming from the discretization on a 3D regular

grid, an iterative solver would generally do about O (n ) flops and stores O (n ) entries (if the

number of iterations is far lower than the dimension of the problem n and without consid-

ering preconditioner) compared with O (n 2) flops and O (n 4/3) entries for the multifrontal

solver (see section 2.2.3.5). In particular, their better scalability made them very popular for

solving high-dimensional problems too big to be processed with direct solvers. However,

their efficiency is very sensitive to the number of iterations which depends strongly on the

internal parameters of the solver and the matrix properties (e.g., the spectrum). Therefore,

the resource consumption of iterative solvers can be quite unpredictable and inconsistent

across problems; in addition, many well-known iterative solver are not guaranteed to be

backward stable.

In this manuscript, we will mainly focus on the GMRES iterative solver that we will

extensively combine with direct solvers and other various preconditioners in a mixed pre-

cision fashion. Therefore, we first introduce the GMRES algorithm in section 2.3.1 and its

MGS-GMRES variant on which we based our rounding error analyses. Then, in section 2.3.2,

we will explain what a preconditioner is and present a few of them that we will use or dis-

cuss later on in the manuscript. Finally, we will quickly review other iterative solvers for the

solution of (1.1) in section 2.3.3.

2.3.1 GMRES

The GMRES algorithm proposed by Saad and Schultz [184] for the solution of general square

linear systems is a Krylov subspace based iterative solver that computes at each iteration



2. BACKGROUND 31

k better and better approximations to the true solution x .

2.3.1.1 The GMRES algorithm. We consider the Krylov subspaces that are of the form

Kk (A, v ) = span{v, Av, A2v, . . . , Ak−1v }, (2.37)

where A ∈ Rn×n and v ∈ Rn , and we consider x0 and r0, respectively, a first guess of the

solution of (1.1) and its associated residual. The GMRES algorithm for the solution of gen-

eral unsymmetric square linear systems consists in minimizing the residual norm of (1.1)

over all vectors in x0+Kk (A, r0/∥r0∥2). For the sake of readability, we denote from now on

Kk ≡ Kk (A, r0/∥r0∥2) if there is no ambiguity. Note that for k ≡ n , Kk spans Rn and GMRES

would deliver the exact solution x in exact arithmetic.

To achieve this, GMRES uses the Arnoldi algorithm proposed by Arnoldi [28] to itera-

tively build orthonormal bases for increasing subspaces K j at a given iteration j . The proce-

dure is as follows. For j = 1, we choose v1 = r0/∥r0∥2 where we verify naturally K1 = span{v1}.
To build the next vector v j+1 at step j + 1, we multiply the previous Arnoldi vector v j by

A, and we use a Gram-Schmidt process to orthonormalize the resulting vector against the

already computed previous vectors v1, . . . , v j . It can be shown that K j+1 = span{v1, . . . , v j+1}.

Algorithm 2.5 Arnoldi with MGS

Input: a matrix A ∈Rn×n , a first vector v1 ∈Rn , and a number of iteration k .
Output: a basis Vk ∈Rn×k for Kk and a Hessenberg matrix H̄k ∈R(k+1)×k .

1: v1 = v1/∥v1∥
2: for j = 1 : k do
3: w j = Av j

4: for l = 1 : j do
5: hl , j = v T

l w j

6: w j =w j −hl , j vl

7: end for
8: h j+1, j = ∥w j ∥
9: v j+1 =w j /h j+1, j

10: end for
11: Vk = [v1, . . . , vk ], H̄k = {hi , j }1≤i≤k+1;1≤ j≤k

A variant of the Arnoldi algorithm using Modified Gram-Schmidt orthogonalization is

described in Algorithm 2.5. The completion of the algorithm delivers a basis Vk ∈Rn×k and

a Hessenberg matrix H̄k ∈R(k+1)×k which verify by construction

AVk =Vk+1H̄k . (2.38)

Since for any vector x in x0+Kk it exists y ∈Rn such that x = x0+Vk y , we have

b −Ax = b −A(x0+Vk y ) =βv1−Vk+1H̄k y =Vk+1(βe1− H̄k y ), (2.39)

where β = ∥r0∥2 and e1 = [1, 0, . . . , 0]T . In addition, since Vk+1 is orthonormal we have ∥b −



32 2.3. ITERATIVE SOLVERS

Ax∥2 = ∥βe1− H̄k y ∥2.

Algorithm 2.6 MGS-GMRES

Input: an n ×n matrix A a right-hand side b , and a number of iteration k .
Output: a computed solution to Ax = b .

1: Initialize x0

2: r0 = Ax0− b
3: β = ∥r0∥, v1 = r0/β
4: for j = 1 : k do
5: w j = Av j

6: for l = 1 : j do
7: hl , j = v T

l w j

8: w j =w j −hl , j vl

9: end for
10: h j+1, j = ∥w j ∥
11: v j+1 =w j /h j+1, j

12: end for
13: yk = arg miny ∥βe1−Hk y ∥
14: xk = x +Vk yk

Following the Arnoldi process, GMRES computes its approximation xk of the solution

of (1.1) as the unique vector of x0+Kk which minimizes the norm of the residual, that is

xk = x0+Vk yk , where (2.40a)

yk = arg min
y

∥βe1− H̄k y ∥2. (2.40b)

We described in Algorithm 2.6 the Modified Gram-Schmidt Generalized Minimal RESidual

(MGS-GMRES) variant of GMRES using Modified Gram-Schmidt orthonormalization. If

k ≪ n , the computation of the minimum (2.40b) is relatively inexpensive to compute;

therefore, the most costly parts of Algorithm 2.6 are the matrix–vector product kernel with

A (step 5) and the orthogonalization process (steps 6 to 9).

2.3.1.2 Orthonormalization and stability. There are three popular ways to orthonormalize

the vectors of the basis in the Arnoldi process that are often preferred over Classical Gram-

Schmidt (CGS): either the Modified Gram-Schmidt (MGS) algorithm, the Householder algo-

rithm, or the Classical Gram-Schmidt with reorthogonalization (CGS2) algorithm, which

consists in reapplying the orthonormalization after a first application of CGS. The reason

for this is that CGS is very sensitive to the rounding errors; it generates a loss of orthogonal-

ity of orderκ(A)2u , againstκ(A)u for MGS and u for Householder and CGS2 (see Giraud et al.

[83]). We describe in Algorithm 2.7 both the CGS and MGS algorithms; the difference being

that, with MGS, we orthogonalize against the emerging set of vectors instead of the original

set as for CGS. The Householder and CGS2 algorithms are the most reliable regarding the

quality of the orthogonalization in inexact arithmetic. However, both algorithms are more

expensive in terms of flops than the two other approaches. Throughout this manuscript,

we will use the MGS-GMRES variant because this is the one among the four which is the



2. BACKGROUND 33

most often used for the solution of large sparse linear systems. However, GMRES can be

combined with any of these four orthonormalization algorithms; for instance, it has been

first combined with the Householder algorithm by Walker [209].

Algorithm 2.7 CGS (left) and MGS (right)
Input: a set of vectors {a j }1≤ j≤n .
Output: the orthonormalized set of vectors {q j }1≤ j≤n from {a j }1≤ j≤n .

1: for j = 1 : n do
2: a (1)j = a j

3: for l = 1 : j −1 do
4: a (1)j = a (1)j − (a j , ql )ql

5: end for
6: q j = a (1)j /∥a

(1)
j ∥

7: end for

1: for j = 1 : n do
2: a (1)j = a j

3: for l = 1 : j −1 do
4: a (1)j = a (1)j − (a

(1)
j , ql )ql

5: end for
6: q j = a (1)j /∥a

(1)
j ∥

7: end for

GMRES has been proven backward stable with both the Householder and the MGS

orthonormalization. It means that there exists an iteration k ≤ n such that GMRES applied

in working precision u delivers an approximate solution xk whose backward error is of

order the unit roundoff u . The proof for the Householder orthonormalization was made

by Drkošová et al. [68], and the one with MGS orthonormalization, which is sensibly more

difficult due to the higher sensitivity of MGS to rounding errors, was proposed a decade

later by Paige et al. [176].

2.3.1.3 Restarted GMRES. When the number of iteration k is large, GMRES becomes im-

practicable since it needs to store O (k n ) entries and since step 13 of Algorithm 2.6 requires

the solution of a dense minimization problem of dimension k . The issue is even more am-

plified for very high-dimensional problems where only a few dense vectors can be stored,

so we are restricted to just a few iterations. To remedy this issue, we can use a restarting

strategy that allows GMRES to cumulate more iterations while bounding the practical cost

by keeping the basis to a small acceptable dimension.

Algorithm 2.8 Restarted GMRES

Input: an n ×n matrix A, a right-hand side b , and maximum number of iterations k .
Output: a computed solution to Ax = b .

1: Initialize x0

2: repeat
3: Compute the approximate solution xk of Ax = b by k iterations of GMRES with the

first guess x0

4: x0 = xk

5: until convergence

We describe the so-called restarted Generalized Minimal RESidual (restarted GMRES) in

Algorithm 2.8. The principle is simple: we start a GMRES for the solution of (1.1) and when

we reach the k th iteration, we stop the process, get the approximate solution xk , erase the



34 2.3. ITERATIVE SOLVERS

basis, and restart GMRES with the first guess initialized to x0 = xk ; we repeat the process

until we are satisfied with the approximate solution. Note that restarted GMRES with a max-

imum fixed number of iterations k < n per GMRES call, as described in Algorithm 2.8, is not

guaranteed backward stable; the solution might stagnate and not converge to a satisfactory

accuracy.

2.3.2 Preconditioners
GMRES might converge too slowly for a wide range of real-life and industrial applications;

therefore, it would be unusable as it is on these problems. This is why we often combine

GMRES (and Krylov subspace based iterative solvers in general) with a preconditioner

aiming to remedy this issue. A preconditioner transforms the original linear system into

an easier one to solve, possessing the same solution. Preconditioning is a fundamental

component of iterative solvers. Actually, the robustness and the computing performance

often depend more on the quality of the preconditioner than on the chosen iterative solver

itself and the setup of its internal parameters.

2.3.2.1 Basics. A preconditioner M of the matrix A is a matrix that approximates A and

should be both relatively inexpensive to compute and apply. We can use M to define a

preconditioned system that shall be solved instead of the original one (1.1) in three main

ways:

• The left preconditioning approach where the system becomes

M −1Ax =M −1b , (2.41)

and which consists in applying the preconditioner to the “left”.

• The right preconditioning approach where the system becomes

AM −1u = b , x =M −1u , (2.42)

and which consists in applying the preconditioner to the “right”.

• The split preconditioning approach where the system becomes

M =M1M2, M −1
1 AM −1

2 u =M −1
1 b , x =M −1

2 u , (2.43)

and which consists in a mix between left and right preconditioning where the pre-

conditioner is split in two; the first part is applied to the left and the second part is

applied to the right.

If M is a good preconditioner, the resulting preconditioned matrix eA =M −1A or AM −1 or

M −1
1 AM −1

2 has a lower condition number than the original matrix A, reducing potentially

the number of iterations. We describe in Algorithm 2.9 left- and right-preconditioned MGS-

GMRES. Note that step 1 is “Optional” in the sense that not every preconditioner requires



2. BACKGROUND 35

some kind of precomputation. For instance, this step is necessary for preconditioners based

on some (approximate) factorization of the matrix A, such as the preconditioners we will

review in the following sections 2.3.2.2 to 2.3.2.4.

Algorithm 2.9 Left- (left) and right- (right) preconditioned MGS-GMRES

Input: an n ×n matrix A and a preconditioner M , a right-hand side b , and a number of
iteration k .

Output: a computed solution to Ax = b .

1: Compute M (Optional)
2: Initialize x0

3: r0 =M −1(Ax0− b )r0 =M −1(Ax0− b )r0 =M −1(Ax0− b )
4: β = ∥r0∥, v1 = r0/β
5: for j = 1 : m do
6: w j =M −1Av jw j =M −1Av jw j =M −1Av j

7: for l = 1 : j do
8: hl , j = v T

l w j

9: w j =w j −hl , j vl

10: end for
11: h j+1, j = ∥w j ∥
12: v j+1 =w j /h j+1, j

13: end for
14: ym = arg miny ∥βe1−Hm y ∥
15: xm = x +Vm ym

1: Compute M (Optional)
2: Initialize x0

3: r0 = Ax0− b
4: β = ∥r0∥, v1 = r0/β
5: for j = 1 : m do
6: w j = AM −1v jw j = AM −1v jw j = AM −1v j

7: for l = 1 : j do
8: hl , j = v T

l w j

9: w j =w j −hl , j vl

10: end for
11: h j+1, j = ∥w j ∥
12: v j+1 =w j /h j+1, j

13: end for
14: ym = arg miny ∥βe1−Hm y ∥
15: xm = x +M −1Vm ymxm = x +M −1Vm ymxm = x +M −1Vm ym

The preconditioned problem does not have to be explicitly formed; rather, solving the

preconditioned system (2.41), (2.42), or (2.43) instead of the original one (1.1) requires one

application of M −1 to a vector at each Arnoldi iteration (step 6 of Algorithm 2.9). While the

preconditioner should reduce the number of iterations of GMRES, if its application is not

sufficiently cheap, we might not obtain any computational improvements. On the other

hand, in general, the better the preconditioner is, that is, the more it reduces the number of

iterations, the more it is demanding in terms of computing resources. This is why finding

the ideal preconditioner that maximizes computing performance is difficult.

Note that the right-preconditioned GMRES can be formulated in a “flexible” way to

accommodate nonconstant preconditioners, we call this algorithm Flexible Generalized

Minimal RESidual (FGMRES) (Saad [183]). This version stores an additional set of j vectors

at each iteration j .

2.3.2.2 LU preconditioner. The LU (or LDLT/LLT) preconditioner consists simply in choos-

ing M = LU where L and U are the LU factors of A. The factors should be computed once

before the start of the GMRES iterations; the application of M −1 at each iteration is an LU

solve.

It might seem strange at first to be willing to use a full direct solver as a preconditioner.

Indeed, with GEPP, GMRES would instantly provide a satisfactory solution in one iteration;

that is, after one LU solve application. However, it becomes interesting to use an LU direct



36 2.3. ITERATIVE SOLVERS

solver as a preconditioner when the LU solver does not offer satisfactory accuracy on the

solution. It can happen, for example, when the LU solver uses an unstable pivoting strat-

egy such as static pivoting (this setting has been explored by Arioli et al. [27]) or when low

precision is used for the factorization (examples of this setting can be found in the papers

of Arioli and Duff [25] and Carson and Higham [45]). In these cases, the GMRES iterations

can enhance the accuracy of the solution of the LU solver. In addition, if the number of iter-

ations to improve the solution is small and the computational performance improvements

obtained with the inaccurate direct solver are substantial, we might be able to solve (1.1)

with less computational resources and as accurately as a stable LU direct solver.

2.3.2.3 ILU preconditioner. The Incomplete LU (ILU) preconditioner for the solution of

sparse linear systems consists of performing the LU factorization of A where some entries

of the sparse factors are dropped following a certain strategy. The underlying philosophy

of ILU is to contain and limit the fill-in during the factorization, see section 2.2.3.2. The

advantage of doing so is that the complexity of the factorization and the number of entries in

the factors can be reduced and, therefore, ILU can improve time and memory performance

compared with a full standard LU factorization. Figure 2.8 illustrates the different number

of entries in A and its ILU or full LU factors.

(a) A (b) ILU (c) LU

Figure 2.8: Entries in A and in the ILU and full LU factors.

Of course, dropping entries during the factorization is not numerically harmless, and

the resulting performance gains come at the cost of inaccurate LU factors. Intuitively, it

can be expected that the more entries we drop, the worse the preconditioner is. However,

the more we drop, the more the resources needed for the computation and application of

the preconditioner are reduced. Hence, a good setting is a trade-off that depends on the

problem.

A prevalent choice of ILU preconditioner is the zero fill-in ILU or ILU(0). As its name

suggests, it consists in avoiding fill-in by dropping any nonzero entries in the LU factors

that are not nonzero in A. Hence, the ILU(0) factors have the same number of nonzero

entries as A, the effect of the fill-in is canceled, and the time and memory consumption

in computing and applying the factors are drastically cheaper than that of a full sparse

LU factorization. However, it often leads to an approximation that is too crude and might

require too many iterations to converge.



2. BACKGROUND 37

The ILU preconditioner that we will use in this manuscript is Incomplete LU with thresh-

old (ILUT). With ILUT, we drop the entries of the factors that are lower than a certain pre-

scribed threshold τilu. This strategy comes from the intuition that small elements carry

less information than larger ones, so keeping the large values will produce a better quality

preconditioner than dropping entries regardless of their magnitude. Dropping elements

by their magnitude and not by position allows, in particular, better control of the numerics.

The downside is that there is no control on the level of fill-in, which can be arbitrarily large.

2.3.2.4 Block Jacobi preconditioner. The block Jacobi preconditioner consists in choosing

the preconditioner M as a block diagonal part of A as illustrated in Figure 2.9. Depending

on the application, the block can be chosen of the same size or not and can overlap or not.

For the preconditioner to be well-defined, we need each block (i.e., Di for i = 1, · · · , 4 in the

figure) to be nonsingular.

D1

D2

D3

D4

Figure 2.9: A block diagonal decomposition of a matrix.

The application of M −1 is therefore reduced to the successive applications of D −1
i for

i = 1, · · · , 4. D −1
i is generally computed by mean of a factorization or by explicitely forming

the inverse. If the blocks are relatively small, the computation and application of M −1

should be relatively cheap; for instance, far cheaper than computing and applying the full

factors of A.

2.3.3 Other iterative solvers
This manuscript mainly focuses on GMRES because it has backward stable forms and can

compute solutions of general square linear systems. However, we believe that many of

our ideas developed for GMRES can be efficiently applied to other Krylov subspace based

iterative solvers.

Other solvers for the solution of symmetric linear systems are, for example, MINimal

RESidual (MINRES) by Paige and Saunders [174] or Conjugate Gradient (CG) by Hestenes

and Stiefel [108] (using the Lanczos process instead of the Arnoldi one).

The BiConjugate Gradient (BiCG) method is a generalization of CG for unsymmetric ma-

trices (Fletcher [75], Sonneveld [195], van der Vorst [207]). Full Orthogonalization Method

(FOM) by Saad [182] can also be used for the solution of unsymmetric square systems.



38 2.3. ITERATIVE SOLVERS

Finally, LSQR proposed by Paige and Saunders [175] is a method for the solution of

rectangular systems.

All these methods can make use of preconditioners and present different trade-offs.

The best choice of method depends strongly on the application.



3 Iterative refinement
history

Iterative refinement is an old and altogether simple algorithm. It has been in
use for more than 70 years and has been the object of many theoretical and prac-
tical analyses, making it one of the most well-understood and predictable linear
algebra algorithms. Though, it is fascinating how decades later, we are still inter-
ested and able to produce new knowledge on it. The key reason for this observa-
tion is that iterative refinement has constantly been evolving over time, repeatedly
reconsidered according to trends, researcher’s interests, and hardware specifica-
tions, as well as the computing challenges of each computing era. In this chapter,
we are interested in providing a brief historical survey on iterative refinement,
answering both questions: how was it used at some time and why ? This chapter
is not interested in providing technical details on the method which is the topic
of chapter 4.

This chapter is also dedicated to providing a list of the research around iterative
refinement, to put these different pieces of work in relation, and to clarify their
respective contributions. Therefore, we hope that it can be used as a survey and
might interest anybody looking for an overview of this specific algorithm.

3.1 Newton’s method (17th century)
The roots of iterative refinement date back to the 17th century with the emergence of New-

ton’s method, from which it is a specialization. Newton’s method consists in iteratively

building approximations xi ∈Rn converging, under suitable conditions (e.g., good starting

point), toward a zero x of a given continuously differentiable function f :Rn →Rn :

xi+1 = xi − (∇ f (xi ))
−1 f (xi ), (3.1)

where ∇ f is the Jacobian matrix of f . We can build correction methods from Newton’s

method that express a problem under the form of a residual f (x ) that we want to minimize.

39



40 3.2. FROM THE 40S TO THE 70S

In doing so, we can “refine” a first guess of the solution x0 to progressively obtain a better

solution, that is, a solution that provides a smaller residual for the problem.

The iterative refinement procedure is the application of Newton’s method to the func-

tion f (x ) = b−Ax and, thus, it is aiming at reducing the residual b−Ax of (1.1). The Newton

iterative procedure becomes in this case

xi+1 = xi +A−1(b −Axi ), (3.2)

and gives the solution x = A−1b in one iteration in the absence of computing errors, for

instance if we use exact arithmetic, no matter the initial guess x0.

In (3.2) three steps can be identified:

(1) Computing the residual: ri = b −Axi , (3.3)

(2) Solving the correction equation: Adi = ri , (3.4)

(3) Updating the solution: xi+1 = xi +di , (3.5)

where each of these steps are subject to rounding errors if they are computed on a computer

in inexact arithmetic. These rounding errors prevent iterative refinement from converging

in one iteration.

3.2 From the 40s to the 70s

The primary official appearance of iterative refinement is attributed to Wilkinson, who pro-

grammed it on the Automatic Computing Engine (ACE) in the 40s during his collaboration

with Turing (1948, p. 111). It was part of a broader study reporting the use of linear algebra

methods with the Pilot ACE and was probably one of the first programs to be written for it.

It is argued that in earlier work, we could already observe embryos of what will be iterative

refinement, such as in the work of Mallock [1933], who seems to present an electrical circuit

implementing it. However, it is actually unclear how old is this algorithm because it may

have been used with earlier computing units or with paper-and-pencil computing.

The inexact representations of numbers on computers and the resulting rounding er-

rors they generate have been an early concern. It gave birth to modern numerical analysis as

a domain of mathematics; in particular, the article of von Neumann and Goldstine [1947] is
considered one of the first in this field. In addition, it also raised the interest in algorithms

able to recover this lost accuracy, such as, naturally, iterative refinement. When looking

more precisely at the context of the use of iterative refinement in this period, we need to

consider three essential facts.

First, a fair amount of bits were already put into the numbers, allowing for reasonably

accurate computations. For example, the ACE on which Wilkinson experimented with iter-

ative refinement could already process single or double precision floating-point numbers

(see Copeland [2005, p. 95]). In addition, the IBM 700’s computers series (commercialized

in the 50s) were using 36 bits single precision; 72 bits double precision format came later on

the 7094 model (see [Wikipedia]). Generally, the only two formats proposed on computers



3. ITERATIVE REFINEMENT HISTORY 41

of this generation were single or double precision; however, for the same arithmetic name

(e.g., single or double precision), there were possibly significant differences in the number

of bits between computers. This situation was overcome by the establishment of the IEEE

754 standard a few decades later in 1985 (see IEEE Computer Society [2019] for the last

revision of the standard).

Second, the use of direct methods with stable pivoting strategies for the solution of

linear systems (e.g., partial pivoting for GE, see section 2.2.1.2) was ubiquitous. In addi-

tion, because the factors of the matrix can be computed once and applied multiple times

throughout the iterations, the refinement procedure can stay relatively cheap, making iter-

ative refinement particularly suited to improve direct methods. For instance, the studies

documented in the ACE’s progress report (Wilkinson [1948]) and another contemporary

study by Fox et al. [1948], as well as all the other studies cited later in this section, use stable

direct methods. We did not find any documented use of iterative refinement for other kinds

of solvers during this period.

Third, almost all computers of this era were computing the exact scalar product in pre-

cision u 2 of two numbers in precision u . To take even more advantage of this feature, most

computers supported the accumulation of the inner products’ unitary products in preci-

sion u 2; this technique is referred to as the “inner-product accumulation” and is described

by von Neumann and Goldstine [1947, sect. 2.3]. As said by Wilkinson [1963, p. 6], this strat-

egy was actually a costless access to higher precision u 2 for certain kind of computations:

“We may say that a double-precision result is obtained although the time taken

by the computation is essentially that which we associate with single-precision

work” (1963).

A direct consequence of this is that it was affordable to accumulate a matrix–vector product

in precision u 2 and, so, the computation of the residual (3.3) of the refinement process

could be done more accurately than the other operations. In other words, there could be

up to two different precisions used in iterative refinement at that time. It shows that the

interest in mixing precisions is not particularly recent and that the first mixed precision

algorithm is almost as old as the first computers.

For these different reasons, the primary usage of iterative refinement was to improve

normwise backward stable direct solvers run in reasonably accurate arithmetics by com-

puting the residual (3.3) with extra-precision. The use of extra-precision on the residual is

interesting because, if we take the example of GEPP, it has been remarked that it removes

the dependence of the forward error on the condition number (see bound (2.24)); the for-

ward error of the solution is therefore cheaply improved, reduced to the unit roundoff of

the working precision u . In addition we can note other secondary use cases for iterative

refinement, for instance as evoked by Fox et al. [1948], it has also been used to roughly

evaluate the forward error on the solution by looking at the changing digits between xi+1

and xi :

“The second solution is worth obtaining [...] in those cases when accuracy of a

given order is required and there is doubt about the number of correct figures



42 3.2. FROM THE 40S TO THE 70S

in the first approximation, of which the residuals do not always give a reliable

indication” (1948).

Moreover, as stated by Golub and Wilkinson [1966], it could be used for performance con-

cerns:

“For large systems a single-precision factorization plus iterative refinement has

the advantage over double-precision factorization without refinement that it

requires less storage [...], is faster” (1966).

Besides Pilot ACE, iterative refinement has been implemented on other computers of

this time such as the ILLIAC (see Snyder [1955]), the IBM 7090/94 with Fortran (see Kahan

[1965], Moler [1964]), or the KDF9 with Algol (see [Wikipedia], Martin et al. [1971], Bowdler

et al. [1966; 1971]).

It was in the 60s that the first rounding error analyses of iterative refinement were pro-

posed. All the analyses of the period cover direct stable solvers based on LU or QR factor-

ization, respectively, for the solution of a square linear system and least squares problem.

The first rounding error analysis of iterative refinement is also attributed to Wilkinson

and appeared in his famous book “Rounding errors in algebraic processes” (Wilkinson [1963,

p. 121]), which established a standard for rounding error analysts. This analysis is based

on a block floating-point representation of the numbers also defined in his book; however,

despite the word “floating”, block floating-point is closer to fixed-point than floating-point

arithmetic. In particular, this analysis reveals a clear connection between the convergence

of the forward error and the conditioning of the problem and is, in a way, the first draft of an

analysis that will be updated and upgraded over time by many researchers. Indeed, the two

main ingredients of the classic iterative refinement analysis are already there: a convergence

condition guaranteeing the computed forward error of the solution to converge to a certain

limiting accuracy. In this analysis, the correction equation (3.4) and the update (3.5) are

computed in working precision u , while the residual (3.3) is computed in extra-precision

u 2.

The second main iterative refinement analysis is attributed to Moler [1967]which adapted

the analysis of Wilkinson to floating-point arithmetic. This analysis is particularly impor-

tant because floating-point representation is the real number format that has become the

most used in scientific computing; therefore, this result is still directly applicable today.

Two major add-ons make it particularly interesting. First, the condition for convergence

becomes κ(A)u ≪ 1, which is exactly the condition as we know it today, up to constants.

Second, this analysis includes different choices for the precision at which the residual (3.3)

is computed: computed in working precision u or computed in extra-precision u 2. Yet,

the case where it is computed in working precision, as for the correction equation and the

update, was rarely considered relevant because, as stated by Moler [1967],

“In this case, xm is often no more accurate than x1” (1967).

It means that the solution at the mth iteration would not be much improved compared

with the first iterate. Specifically, the forward error remains dependent on the condition-

ing of the problem without the use of extra-precision. For this reason, the recommended



3. ITERATIVE REFINEMENT HISTORY 43

configuration was to use extra-precision on the residual. Interestingly, the fixed precision

approach, using the same precision for all the refinement procedures (3.3)–(3.5), will be re-

considered a decade later while the interest and the ability to use extra-precision will fade;

more is said about this in section 3.3. This analysis also appeared in the book by Forsythe

and Moler [1967].
In the 60s, Golub and Björck both worked on the application of iterative refinement

for the improvement of the computed solution of the LS problem (2.25). At first, Golub

applied the iterative refinement process directly to the overdetermined system to improve

the computed solution x̂ obtained through the QR decomposition of A with Householder

transformations (see Golub [1965]). This approach has also been used by Bauer [1971], and

an Algol implementation was proposed by Businger and Golub [1965]. However, as pointed

out by Golub and Wilkinson [1966], the iterative refinement process might not work well

for overdetermined systems. Namely, if the system is not consistent or nearly consistent,

the residual will not converge to working precision, and the forward error can be arbitrarily

large; this is something that we further explain in section 4.5.2.

To overcome this issue, Björck [1967] proposed to apply the iterative refinement to the

augmented system whose solution reveals the one of the least squares problem. As the aug-

mented system is a square linear system, iterative refinement is guaranteed to converge

regardless of the overdetermination. An Algol implementation was proposed by Björck and

Golub [1968]. Later, Fletcher [1975], Björck [1978] discussed the use of the Cholesky fac-

torization combined with iterative refinement for solving the least squares problem. They

remarked that while this approach is less robust regarding the conditioning of the problem

in comparison with the Householder decomposition, it has a lower flops complexity.

Good surveys of the period about iterative refinement applied on linear systems and

least squares problems can also be found in the books of Golub [1969] and Stewart [1973]. In

particular, the analysis drawn in the book of Stewart [1973] has been reworked and quoted

in many subsequent analyses.

3.3 From the 70s to the 2000s
For a long time, iterative refinement has only been used in fixed-precision, meaning that

all the operations (3.3)–(3.5) were computed in working precision u . Even today, this is still

a widely used form of iterative refinement. However, at first sight, it is not obvious what

motivated the change from using extra-precision u 2 for the residual computation, that

we covered in the previous section 3.2, to simply applying it in precision u as for all the

other operations. As previously stated, downgrading the precision on the residual from u 2

to u could only provide, at best, a small improvement on the forward error of a solution

obtained with a stable solver (e.g., GEPP). Mainly, it is not able to remove the dependency

of the forward error on the conditioning of the problem (see bound (2.24) on the forward

error of GEPP). These reasons even led the community to consider for a while that iterative

refinement was not worth doing with no extra-precision on the residual computation.

At the end of the 70s, two articles played an essential role in the reconsideration of fixed

precision iterative refinement. They highlighted two of its major benefits.



44 3.3. FROM THE 70S TO THE 2000S

The first benefit of fixed precision iterative refinement, as shown by Jankowski and

Woźniakowski [1977], is that it guarantees normwise backward stability of any linear solver,

direct or iterative, more or less stable, under some conditions. Such a result appeared in a

period where propositions for solving linear systems diversified, iterative methods were al-

ready on the rise, and direct methods were adapting to parallel computing and sparse data

structures. Many of these new methods were not normwise backward stable, and the ability

of iterative refinement to recover this stability is both theoretically and practically very ap-

pealing and useful. In their article Jankowski and Woźniakowski [1977] used the Chebyshev

iteration to solve the correction equation (3.4), showing by this way that iterative refine-

ment is not constrained to be used only with direct methods and can be implemented

on top of any linear solver. To the best of our knowledge, this is the first documented use

that combines iterative refinement with an iterative solver. They recall this technique in

Jankowski and Woźniakowski [1985] for the accurate solutions of elliptic problems in single

precision arithmetic. Higham [1988; 1990] used iterative refinement with some fast direct

methods for the solutions of Vandermonde-like systems. Iterative refinement has also been

extensively used to correct instability arising from sparse direct solver techniques. For ex-

ample, it has been combined with more scalable but less stable pivoting strategies (see Li

and Demmel [1998], Dongarra et al. [2001]) or simply without numerical pivoting at all (see

Gill et al. [1996]), and with non-zeros drop strategies (see Arioli et al. [1989], Zlatev [1982])
that aim to reduce fill-in. Other applications of iterative refinement are worth mention-

ing, such as its use in block elimination methods (see Govaerts and Pryce [1990], Govaerts

[2000]) or in the accurate computing of matrix eigenpairs (see Dongarra et al. [1983]).

The second benefit of fixed precision iterative refinement is that it guarantees compo-

nentwise backward stability of every linear solver under some conditions. In particular, it is

well-known that GEPP is a normwise backward stable solver, but it is not componentwise

backward stable; that is, the computed solution bx may not exactly satisfy a linear system

with each coefficient slightly different from those of the original one. A scaling solution

was proposed to make GEPP stable in that sense (see Skeel [1979]), but it is not very helpful

in practice because it requires estimates of the solution components x . However, when

combined with iterative refinement, GEPP becomes componentwise backward stable after

one iteration as demonstrated by Skeel [1980] and is, consequently, stable in a stronger

sense. In practice, the improvement provided by fixed precision iterative refinement on top

of GEPP is generally not essential for most applications. In more detail, it transforms the

dependence of the forward error on κ(A) (see bound (2.24)) to dependence on cond(A, x ).
However, even though cond(A, x ) can be arbitrarily smaller than κ(A), we know that the two

quantities are close with proper scaling of A. While it might have a reduced interest in prac-

tice, the theoretical guarantee of componentwise stability is a very appealing property that

can serve other rounding error analyses. For example, this result is crucial for the demon-

stration of the stability of the sparse GEPP to guarantee that we are solving a perturbed

system carrying the same sparse structure as the original one; it is explained by Arioli et al.

[1989]:

“When solving systems of n linear equations Ax = b by means of Gaussian elim-

ination with pivoting, a classical analysis shows that we should expect to get



3. ITERATIVE REFINEMENT HISTORY 45

the exact solution x̂ of a slightly different linear system (A+∆A)x̂ = b +∆b [...].
This classical view permits any entry of ∆A or ∆b to be equally large, and in

particular A+∆A may be dense even if A is quite sparse.” (1989).

Following these two results, Higham worked on their compilation to provide the most

general analysis of iterative refinement at that time. It was done in two stages. At first,

Higham [1991] proved that fixed precision iterative refinement applied on an arbitrary

solver is stable in the componentwise sense under some conditions, merging both the anal-

ysis of Skeel [1980] specialized to GEPP and of Jankowski and Woźniakowski [1977] special-

ized on the normwise stability. In addition, he extended his results to the least squares case

following the idea of Björck [1967] by applying iterative refinement on the augmented sys-

tem (4.29). In a second time, Higham [1997] extended his analysis to allow the residual (3.3)

to be computed in extra-precision, taking special care in considering lapack implementa-

tions and making sure his analysis covered them.

Fixed precision iterative refinement has also been considered in fault-tolerant comput-

ing by Boley et al. [1995]. They considered LU or QR factorization for the solution of (1.1)

followed by one step of fixed precision iterative refinement. If the solution does not satisfy

its expected accuracy after the correction, it can be concluded that a transient error oc-

curred in the hardware. On the other hand, if it does satisfy the expected accuracy, it means

that either there were no errors or some errors of modest impact were silently corrected.

In that sense, we can consider the method tolerant to the error.

Other than the work of Arioli et al. [1989], which is more theory focused, the sparse

case has also been tackled by Zlatev [1982] in a more performance-oriented way. In par-

ticular, his work highlighted one main asset of sparse iterative refinement compared with

the dense case: as the original matrix A has far fewer nonzeros than its factors due to fill-

in (see section 2.2.3.2), the memory overhead for storing a copy of A in order to compute

the residual is low. In addition, he showed that using drop tolerance strategies with fixed

precision iterative refinement can even lead to memory savings compared with a standard

direct solver.

As we have explained previously, the rising interest of fixed precision iterative refine-

ment from the 70s can be partly explained by the use of more unstable solvers, where

the increasing dimension of the problems led computer scientists to trade stability off for

scalability. However, the loss of extra-precison on the computation of the residual (3.3)

is mostly due to hardware evolutions. Mainly, the inner-product accumulation capability,

allowing cheap extra-precision computation, progressively disappeared from the mid-60s.

Thus, using extra-precision for the residual became more or less complicated, slow, or even

impossible, depending on the computers. This inconsistency of the inner-product accumu-

lation support between machines made the application of the residual in extra-precision

less common, as stated by Golub and van Loan [1996]:

“The primary drawback of mixed precision iterative improvement is that its im-

plementation is somewhat machine-dependent. This discourages its use in soft-

ware that is intended for wide distribution.” (1996).

Fixed precision iterative refinement was and is still widely used in the linear algebra



46 3.3. FROM THE 70S TO THE 2000S

landscape. Most of the books of this period that focused on linear algebra and direct solvers

for solving linear systems mention it at least. Probably the most exhaustive is the book of

Higham [2002, p. 231], but dedicated sections and chapters about fixed precision iterative

refinement can also be found in the following books by Demmel [1997, p. 60], Golub and

van Loan [1996, p. 126], and Duff et al. [2017, p. 80]. Also, the most used direct solvers and

linear algebra libraries often embed fixed precision iterative refinement. For the solution of

a dense linear system, lapack ([Netlib]) implements such routines (routines whose names

end in -rfs and called by the expert drivers whose names end in -svx). For the sparse case,

for instance, the sparse direct solvers MUMPS (Amestoy et al. [2001]), PaStiX (Hénon et al.

[1999]), and SuperLU (Demmel et al. [1999]) embed fixed precision iterative refinement to

improve the accuracy of the solution (see Amestoy et al. [2001]).

Even though most of the studies and applications of iterative refinement between the

70s and the 2000s were focused on fixed precision, some work took different approaches

by exploring the use of multiple precisions in the computations. The following paragraphs

present these efforts.

Kiełbasiński [1981] proposed to increase gradually, at each iteration, the number of bits

in the mantissa of the precision with which the residual (3.3) and the update (3.5) are com-

puted. This gradual increase should be done smartly in order to optimize the theoretical

number of bit operations to reach a given targeted accuracy on the solution. Smoktunow-

icz and Sokolnicka [1984; 1990] amended this previous work and adapted it to the least

squares problem (2.25). We call such approaches “dynamic precision” strategies because

the precisions at which the operations (3.3)–(3.5) are computed can change from one it-

eration to another. Of course, implementing it as described would require some variable

floating-point arithmetics, and considering that there were generally only two arithmetics

available on computers at this time (single or double precision), such a dynamic precision

method was not relevant in practice. Interestingly, the paper of Kiełbasiński [1981] is the

first documented study we know about that computes the correction equation with lower

precision than the update. Actually, this setting of precisions, where the correction equa-

tion is computed less accurately to reduce resource consumption, began to raise much

attention only in the mid-2000s. The two following paragraphs will also present pioneer

studies using this setting.

The contribution of Douglas et al. [1990] is quite unique as well in the landscape of

iterative refinement. Indeed, they tackled the iterative refinement algorithm from an elec-

trical engineering standpoint where they used a fast but inaccurate analog linear solver

for the computation for the correction equation (3.4) and recovered a good accuracy by

processing the residual (3.3) and the update (3.5) with slower digital circuitry. Namely, they

are in a configuration where the correction equation is computed with lower precision than

the working precision. Hence, the hybrid analog/digital circuit is faster than the full digital

circuit for computing the solution of (1.1).

The work of Turner and Walker [1992], similarly to Jankowski and Woźniakowski [1977],
employed a form of iterative refinement using an iterative solver to solve the correction

equation (3.4). In their case, they used GMRES, and similarly to Douglas et al. [1990], they ap-

plied this iterative solver in single precision while the residual (3.3) and the update (3.5) are



3. ITERATIVE REFINEMENT HISTORY 47

processed in double precision. This method can provide a solution with double precision

accuracy while performing the iterative solver in single precision (say), and can potentially

accelerate the computation.

The paper by Gulliksson [1994] proposed to extend the analysis of Björck [1967] to the

constrained and weighted linear least squares case. Congruently to Björck [1967] and the

other studies on the least squares case of the 60s, he worked with extra-precision on the

residual (3.3).

3.4 From the 2000s to the 2010s
While, before the 2000s, iterative refinement was primarily used to improve the accuracy

and stability of linear solvers, after the 2000s, it was increasingly considered as a way to

improve the computational performance reliably. The core idea is to use an inaccurate

but less resource-demanding linear solver deliberately; this solver would provide a poor

solution for the original linear system (1.1) that can be refined cheaply to the targeted

accuracy with iterative refinement. This is achieved by using the low precision linear solver

for the solution of the correction equation (3.4) while computing the residual (3.3) and the

update (3.5) in working precision.

Prior to the 2000s, the workload was essentially on the processing unit and not on the

memory subsystem leading to little advantages of low precision data motion. Adding the

fact that on many processing units, single precision computations were not faster than

double precision ones, low precision arithmetic could not offer acceleration. However, in

the early 2000s, two main hardware trends changed how we performed linear algebra com-

putations: the widening gap between the speed of processors and the speed of memories

and the widespread availability of short vector SIMD processing units. Because Single In-

struction Multiple Data (SIMD) vector units, which started appearing in the mid-1990s, can

accommodate twice as many single precision values as double precision ones, the speed

of compute-bound algorithms can be potentially doubled by using single precision arith-

metic. Identically, memory-bound algorithms can also be accelerated by a potential factor

of two because twice as many single precision values can be transferred simultaneously

from the memory as double precision ones. However, as explained by Buttari et al. [2007]:

“Although short vector, SIMD processors have been around for over a decade, the

concept of using those extensions to utilize the advantages of single precision

performance in scientific computing did not come to fruition until recently, due

to the fact that most scientific computing problems require double precision

accuracy” (2007).

Since most scientific problems require a double precision accuracy solution, low precision

arithmetics cannot be used alone. Thus, the observation that iterative refinement can re-

cover a reasonable accuracy from a low precision solver opened new potential applications

and stimulated the research interests for this algorithm.

It is a set of papers from Jack Dongarra’s team in Tennessee in the mid-2000s that par-

ticipated extensively in the reconsideration of iterative refinement as a way to improve the



48 3.4. FROM THE 2000S TO THE 2010S

resource consumption of a linear solver. In Langou et al. [2006], Buttari et al. [2007], the

authors proposed both: a readaptation of the normwise analysis of iterative refinement

with the LU direct solver applied in low precision and performance studies on different ar-

chitectures (e.g., Intel Pentium III, Intel Pentium IV, AMD Opteron, Cray X1, IBM SP Power3,

and others). These performance studies successfully highlighted time gains for the solution

of dense linear systems when using single precision factorization instead of double, getting

closer to a factor of 2 on different hardware configurations. Some specific hardware, such as

the Cell processor, could even lead to a factor of 10. Buttari et al. [2008] proposed to extend

this approach to sparse linear systems. In addition to a performance study of iterative re-

finement applied to the sparse case, they proposed a larger discussion on the acceleration

of iterative methods with the preconditioner applied with lower precision. Dongarra’s team

finally summarized their results in the survey by Baboulin et al. [2009].

Actually, the work by Langou et al. [2006] is not precisely the first to implement iterative

refinement over a low precision LU direct solver. Indeed, a previous paper of Geddes and

Zheng [2003] already assessed this configuration, but with some slight differences. First, the

LU factors are computed in double precision, and the residual and update are processed

in software-emulated high precision arithmetic. Second, they did not provide a rounding

error analysis.

The previously presented efforts mainly addressed implementations of iterative refine-

ment over direct solvers; however, iterative methods can also be efficiently combined with

iterative refinement. For example, in the work of Strzodka and Göddeke [2006;], the authors

used a low precision CG to solve the correction equation (3.4). One can note that this is

strictly the approach of Turner and Walker [1992] reviewed in the previous section 3.3, the

difference being that the solver is not GMRES in this case. Few other papers adopted and

studied this setting (see Anzt et al. [2012; 2011]). Moreover, it can be quite natural to com-

pare iterative methods to iterative refinement, mainly when the preconditioner is based

on a direct method. For example, Arioli et al. [2007] compared iterative refinement and

GMRES/FGMRES over a perturbed static pivoting factorization, and Arioli and Duff [2008],
Hogg and Scott [2010] compared iterative refinement and FGMRES using single precision

LU factorization while providing double accuracy solution.

Multigrid solvers are another class of methods dedicated to solving linear systems aris-

ing from PDEs. They were first introduced in the 1970s and have grown since then. Their

ability to efficiently target high-dimensional problems made them very popular from the

1990s; therefore, it does not come as a surprise that these methods have also been efficiently

combined with iterative refinement. Equivalently to what has been done in the previous

studies using GMRES and CG, it is about applying the multigrid solver in lower precision for

the solution of (3.4) while the refinement operations (3.3) and (3.5) are operated in higher.

Göddeke et al. [2007]were the first to address such an algorithm and actually compared it

with CG-based iterative refinement. They completed this study in Goddeke and Strzodka

[2011]. Sumiyoshi et al. [2014], Glimberg et al. [2012] also adopted this approach.

All the previous contributions that we just presented are almost always meant to take

advantage of the time and memory saving of single precision over double precision that

most of the CPU of that time exhibited. As explained earlier, single precision could be



3. ITERATIVE REFINEMENT HISTORY 49

twice as fast as double precision. On some architecture, the single precision speedup could

even be of order a factor 10, such as on the Cell processor, making iterative refinement

approaches even more relevant (see Kurzak and Dongarra [2007]). In addition, at that exact

moment, other kinds of processor units were introduced into the scientific computing

landscape:

• The Field-Programmable Gate Array (FPGA) architectures can, contrary to micro-

processors, operate efficiently with arbitrary-width number formats, making this

technology particularly relevant for mixed precision algorithms. Implementations

of LU-based iterative refinement on these units were done by Sun et al. [2008], Lee

and Peterson [2011], and a CG-based implementation was proposed by Strzodka and

Göddeke [2006].

• Graphics Processing Unit (GPU) are many-core devices designed for highly paral-

lelizable computations. They were invented to target computer graphics and image

processing but became a more generalized computing device. Nowadays, computing

linear algebra problems with GPUs seems natural and widespread; however, back in

the 2000s, its use in scientific computing was more at the experimental stage. Inter-

estingly, iterative refinement has been quickly considered and combined with GPU

computation (e.g. Göddeke et al. [2005], Goddeke and Strzodka [2011], Sumiyoshi

et al. [2014], Glimberg et al. [2012]). One natural reason is that for some time GPUs

were only supporting single precision and no access to higher double precision was

possible. When double precision was finally available, it was more than twice slower

than single precision.

Parallel implementations of iterative refinement using low precision LU factorization

are available in the PLASMA library Agullo et al. [2009]; for example, in the routine dsgesv
for single precision LU factorization followed by double precision refinement.

Meanwhile, during the same period, the old approach using extra-precision compu-

tation for the residual (3.3), which has been progressively avoided from the 70s (see sec-

tion 3.3), is being reintroduced. The main problem was the inconsistency in hardware

support for extra-precision, which complicated the portability of any implementation. In-

terestingly, from the 2000s, reliable software solutions for access to extra-precision were

proposed. It unlocked the possibility of computing the residual in higher precision than

the working precision u .

In 2002, following the BLAS Technical Forum meetings, which began in November 1995

at the University of Tennessee, a new BLAS standard was established (see Dongarra [2002]).

Among other things, it addressed the extended and mixed precision version of the BLAS rou-

tines in Dongarra [2002, chap. 4]. With XBLAS, Li et al. [2002] proposed an implementation

of this standard, allowing computation of the residual in extra-precision in a portable and

efficient way. As most of the hardware does not support extra-precision natively (e.g., fp128

quadruple precision), they used the double-double arithmetic (see section 2.1.2), which

is a good trade-off between high accuracy and performance. There are other examples of

extra-precision implementations, such as the Quad-Precision Math Library GNU (2010) or

the Intel Fortran Compiler that both support fp128. As stated by Higham [2002, p. 241]:



50 3.5. FROM THE 2010S TO 2022

“However, with the release of the Extended and Mixed Precision BLAS (see §27.1O)

and the portable reference implementation for IEEE arithmetic, and with the

ubiquity of IEEE arithmetic, portable mixed precision iterative refinement is now

achievable” (2002).

These software developments made the use of extra-precision on the residual (3.3) possible

again when the working precision u is already the most precise arithmetic supported by

the hardware, generally fp64.

Demmel et al. [2006] revisited extra-precision iterative refinement to develop a set of

practical stopping criteria for this algorithm; they are described in section 4.6. These criteria

aim to quickly detect the convergence of the solution to its limiting accuracy to ensure

both: that we stop when the refinement has converged and that we make as few iterations

as possible to detect the convergence. Later, Demmel et al. [2009] extended this work to the

least squares problems (2.25) by using the augmented system formulation of Björck [1967];
it presents some new challenges compared with the square linear system case.

The availability of extra-precision with XBLAS also renewed the interest in using mixed

precision in Newton’s method, where the residual (3.3) computed in extra-precision can

bring improved accuracy. Tisseur [2001] developed a general rounding error analysis for

Newton’s method, which, consequently, also applies to iterative refinement since it is a

specialization of Newton’s method for the solution of linear systems (see section 3.1). The

analysis of iterative refinement being well-known, it then serves as a check to verify if the

more general analysis is consistent.

Implementations of iterative refinement using extra-precision on the residual are avail-

able in the NAG library Ltd [2005]; for example, in the routines f01abf, f04abf, f04aef,

f04amf and others.

3.5 From the 2010s to 2022
The fastly growing presence of very low precisions since the mid-10s offered new oppor-

tunities for scientific computing and boosted the research interests over mixed precision

algorithms. Most of our supercomputers can now use more than four different precisions;

for example, half, single, double, and quadruple precision. Because of this, in recent years,

much effort has been made to upgrade iterative refinement into a more versatile algo-

rithm regarding the choice of precision for computing its operations (3.3)–(3.5). These

efforts came to fruition under a new form of iterative refinement that allows setting inde-

pendently the precisions at which each operation (i.e., (3.3), (3.4), or (3.5)) is computed

and, therefore, bridges the three main previously evoked uses together: extra-precision for

the computation of the residual (3.3) to further improve the forward error accuracy, the

same fixed precision for all the operations (3.3)–(3.5) which can bring stability for unstable

solvers, and low precision for the solution of the correction equation (3.4) which improves

the computational performance.

During the 2010s, much work has been done on the hardware to accommodate efficient

half precision arithmetics (i.e., fp16, bfloat16, tfloat32 in Table 2.1), which consume signifi-

cantly less storage, data movement, and energy, and allow more flops per clock. More details



3. ITERATIVE REFINEMENT HISTORY 51

are given on these low precisions in sections 2.1.2 and 2.1.3. Naturally, with such impressive

benefits, much attention has been directed towards leveraging these arithmetics in scien-

tific computing applications. Moreover, the recent announcement of the fp8 arithmetic

keeps fueling the need for research in this area.

The interest of clearly separating the precision inside iterative refinement in three dis-

tinct precisions, one for each operation (3.3)–(3.5), stems from the emergence of these

new arithmetics. Because, first, accounting for quadruple precision in software, our cur-

rent supercomputers can generally accommodate at least four different precisions. In such

a heterogenous arithmetic ecosystem, we need to shape our algorithms toward a highly-

mixed-precision scheme to optimize the hardware performance with the application re-

quirements as much as possible. It is the main reason for the current formulation of iterative

refinement, which allows for a more versatile set of precisions and is, therefore, more suited

for the current needs of applications running on such heterogeneous architectures. Sec-

ond, while still many scientific applications can handle single precision accuracy, a full half

precision solution accuracy is, in most cases, not enough; therefore, it is essential to have a

strategy to recover the accuracy when working with these precisions. For these two reasons,

the interest over iterative refinement skyrocketed in the late 2010s.

It is the work of Carson and Higham [2017; 2018] in the late 2010s that greatly partici-

pated for this revision of iterative refinement.

At first Carson and Higham [2017] revisited the analysis that Higham proposed in the

90s, which was at this time the most general analysis (it can be found in Higham [1997] and

in Higham [2002, chap. 12]). This older analysis requires at least κ(A) ≤ u for the conver-

gence to be guaranteed, regardless of the solver used for the correction equation (3.4). With

changes in the solver assumptions and the introduction of a new quantity better capturing

the sharpness of an inequality, Carson and Higham [2017] proposed a new convergence

condition that can potentially allowκ(A)> u . In particular, they showed that using iterative

refinement with a left-preconditioned GMRES by the LU factors instead of a more classical

LU solver carries a less restrictive convergence condition than κ(A) < u . In this way, this

approach can significantly improve the robustness with respect to the condition number

of the problem.

A year after, Carson and Higham [2018] addressed the use of low precision for the com-

putation of the correction equation solution (3.4). This last work can be seen somehow

as the combination of the analyses of Higham [1997] and Langou et al. [2006] accounting

for the robustness improvement brought previously in Carson and Higham [2017]. One of

the main add-ons is the possibility of solving the correction equation with a low precision

solver in addition to using extra-precision for the computation of the residual (3.3). With

this scheme, the authors could use a fast low precision solver, using, for example, half pre-

cision, while recovering full double precision accuracy on the forward error. They propose

two different specializations for the solver, both using a formulation in three precisions:

either a GEPP solver, which is the classical/historical choice of solver, or the more robust

LU left-preconditioned GMRES strategy, inherited from their previous work. The robust-

ness consideration actually became even more critical in this study because when low

precisions are in play, the convergence conditions become more restrictive. Therefore, the



52 3.5. FROM THE 2010S TO 2022

left-preconditioned GMRES approach, which can overcome at some point this restrictive

condition, makes even more sense.

Finally, Carson et al. [2020] tackled the least squares case. The method, as most of the

iterative refinement algorithms on least squares problems, relies on the Björck [1967] aug-

mented system approach, which transforms the least squares problem into a square lin-

ear system. The previous results of Carson and Higham [2018] are then applicable to this

square linear system, and the authors derived analyses for specializations with QR direct

solver and left-preconditioned GMRES solver providing equivalent results as in Carson and

Higham [2018]. On the other hand, Higham and Pranesh [2021] also proposed to tackle

the LS problem, but, by solving the normal equation (2.26) with the left-preconditioned

GMRES approach where the Cholesky factors are used as a preconditioner. They explained

that the GMRES solver could be naturally exchanged with CG; while it would break the

theoretical convergence guarantees because preconditioned CG is not backward stable, it

seems to have little effect in practice.

Besides, a few improvements were proposed for left-preconditioned GMRES-based

iterative refinement. First, Carson and Khan [2022] explored the use of the approximate

inverse preconditioner instead of using the LU or QR factors. Second, Oktay and Carson

[2022] proposed to use a recycling strategy inside the GMRES solver that can reduce the

cumulated number of GMRES iterations significantly. Recycling is a well-known approach

for Krylov subspace based solvers where we reuse information from previous solves on

systems that share the same matrix.

Motivated by these new theoretical findings, different performance analyses assessed

the sustainability and the benefits of using these new forms of iterative refinement on

different kinds of solvers.

For the solution of dense linear systems, Haidar et al. [2017; 2018] especially targeted

half precision factorization through GPU and investigated the LU and left-preconditioned

GMRES solvers for iterative refinement, as well as other forms of iterative methods using LU

preconditioning. Haidar et al. [2020; 2018] extended these studies by exploiting the GPU ten-

sor cores which can deliver even higher performances; error analyses of LU solver with GPU

tensor cores have been carried out by Blanchard et al. [2020], Lopez and Mary [2020]. The

different implementations resulting from these efforts were made available in the MAGMA

library [Magma]; for example, with the dhgesv_iteref_gpu or dsgesv_iteref_gpu rou-

tines, and the cuSolver library NVIDIA [2019]. The iterative refinement using the LU left-

preconditioned GMRES is actually the algorithm used by the new HPL-AI Mixed-Precision

Benchmark [HPL-AI], which solves a dense system to double precision accuracy using

an fp16 factorization; #1 on this benchmark in 2022 is the Frontier supercomputer (#1

TOP500 top [2022] in 2022, USA).

While performance studies on dense linear systems using the recent forms of iterative

refinement were quickly tackled, less content has been produced for the sparse case. It

may be because, on many supercomputers, the only way to access efficient half precision

is on GPUs. However, the use of these units in sparse solvers is less straightforward and

attractive than for the dense case due to the lower granularity of the computation. Zounon

et al. [2022] investigated these techniques’ potential benefits and pitfalls on popular direct



3. ITERATIVE REFINEMENT HISTORY 53

sparse solvers: MUMPS, PARDISO, and SuperLU. They consider multi-core parallelism,

acceleration with single precision factorization, and incomplete factors preconditioners.

The papers of Loe et al. [2021;] proposed performance studies of iterative refinement

with GMRES for the solution of large sparse linear systems using GPUs. In the same fashion

as Turner and Walker [1992], the GMRES solver is applied in single precision for the solution

of the correction equation (3.4), while the residual (3.3) and the update (3.5) are in dou-

ble. Different kinds of preconditioners are used (block Jacobi and polynomial); the study

compares its iterative refinement approach with a restarted GMRES applied first in single

precision and then fully switched to double precision. This form of iterative refinement has

also been studied by Lindquist et al. [2020; 2022].

The use of GPUs for accelerating multigrid solvers has already been studied in the 2000s.

An update of this approach is provided by Oo and Vogel [2020], who employ GPU’s half

precision instead of single precision as previously done. In this study, the multigrid solver

uses either full half precision or progressively increases or decreases the precisions as the

grids get coarser. The relevance of this last approach was confirmed by the error analysis of

McCormick et al. [2021], Tamstorf et al. [2021], which combines mixed precision multigrid

with iterative refinement; they concluded that

“[...] V-cycles and FMG are capable of leveraging progressive precision by using

increasingly lower precision on levels that are increasingly coarser, and thus de-

creasingly accurate” (2020).

Interestingly, the increasing number of computer arithmetics has also renewed the

interest in dynamic strategies. In the 80s, the papers of Kiełbasiński [1981], Smoktunowicz

and Sokolnicka [1984]proposed to progressively increase the number of bits of the precision

at which the residual (3.3) and the update (3.5) are computed. At this time, the hardware

could not process arbitrary precisions, and the idea could not be implemented. However,

the recent access to more arithmetics in standard supercomputers or the use of FPGAs,

which can directly supply for arbitrary arithmetic formats, makes this strategy realizable by

now. A direct successor of these studies is the papers of Lee et al. [2018; 2020], who proposed

to rely on the number of cancellation bits in the residual to know when we should increase

the precision. On the other hand, as proposed by Oktay and Carson [2022], we can also

dynamically change the precision at which the correction equation (3.4) is solved, which

affects the algorithm’s convergence. The idea is to start with the least accurate solver and

switch to more accurate ones if we observe that the solution cannot converge.

The general trend over mixed precision techniques in the 2010s raised interest around

iterative refinement, the algorithm we mainly focus on in this manuscript. However, re-

search on mixed precision algorithms is going far beyond iterative refinement: Higham

and Mary [2022], Abdelfattah et al. [2021] are two more general surveys covering the use of

mixed precision in linear algebra.



54 3.6. SUMMARY

3.6 Summary
We have seen that iterative refinement has been used in four main different ways through

the different periods, each of them is achieved by a specific setting of precisions for the

computation of the residual (3.3), the correction equation (3.4), and the update (3.5). We

summarize below these different settings in chronological order of appearance:

• 1: Get a better forward error with extra-precision on the residual (3.3). Using extra-

precision for the residual computation removes the dependence of the forward er-

ror of the solution on the condition number. This technique is particularly relevant

for applications requiring good accuracy on the forward error and dealing with ill-

conditioned problems. It is the first form of iterative refinement. Most of the studies

on it are covered in section 3.2.

• 2: Recover the stability with fixed precision. When the factorization is not done with a

stable algorithm, such as GEPP, iterative refinement applying all its operations (3.3)–

(3.5) in the same precision can recover the backward stability. Note that this property

is also valid for extra-precision iterative refinement. Most of the studies on fixed

precision are covered in section 3.3.

• 3: Accelerate the solution of linear systems with low precision on the correction equa-

tion (3.4). Applying the costly solver for the solution of the correction equation in a

lower precision and using the working precision for the computation of the residual

and the update allows taking advantage of the low precision benefits while refining

the solution to working precision accuracy cheaply. Most studies about using low

precision for the correction equation are covered in section 3.4.

• 4: All previous strategies combined. Stability, performance, and high accuracy can

all be achieved simultaneously by using extra-precision on the residual (3.3), low

precision on the correction equation (3.4), and working precision on the update (3.5).

It leads to implementations of iterative refinement using more than three different

precisions. Most of the studies for this setting are covered in section 3.5.

We classify in Table 3.1 all the references of this chapter based on the linear solver used

on the correction equation and the previously presented iterative refinement setting em-

ployed (numbered from 1 to 4). We also use a color code to refer to the contribution period.

One reference can appear in different cells because it has contributions in each of these

cells. Also, for some particular papers, it is sometimes unclear which cell the contribution

belongs to, so we made some arbitrary choices.



3. ITERATIVE REFINEMENT HISTORY 55



56
3.6.

SU
M

M
A

R
Y

Table 3.1: Summary of existing scientific papers about iterative refinement classified by type of combination of precision and by linear solver used. The
bold references are the articles related to the contributions of this manuscript. In red are represented the references from the 40s to the 70s (section 3.2), in
blue from the 70s to the 00s (section 3.3), in green from the 00s to the 10s (section 3.4), in purple from the 10s to 2022 (section 3.5).

1 2 3 4 Dynamic

Main rounding

error analyses

Wilkinson [1963]

Golub [1965]

Moler [1967]

Björck [1967]

Higham [1997]

Carson and Higham [2017]

Jankowski and Woźniakowski [1977]

Skeel [1980]

Higham [1991]

Higham [1997]

Douglas et al. [1990]

Buttari et al. [2007]

Carson and Higham [2018]

Carson et al. [2020]

Amestoy et al. [2021]

Carson and Khan [2022]

Kiełbasiński [1981]

LU/LDLT/LLT

solvers

Wilkinson [1948]

Fox et al. [1948]

Snyder [1955]

Wilkinson [1963]

Moler [1964]

Kahan [1965]

Bowdler et al. [1966]

Golub [1969]

Martin et al. [1971]

Bowdler et al. [1971]

Forsythe and Moler [1967]

Stewart [1973]

Zlatev [1982]

Dongarra et al. [1983]

Golub and van Loan [1996]

Higham [1997]

Demmel [1997]

Higham [2002]

Demmel et al. [2006]

Carson and Higham [2017]

Skeel [1980]

Higham [1988]

Arioli et al. [1989]

Higham [1990]

Govaerts and Pryce [1990]

Higham [1991]

Boley et al. [1995]

Gill et al. [1996]

Demmel [1997]

Higham [1997]

Li and Demmel [1998]

Dongarra et al. [2001]

Higham [2002]

Geddes and Zheng [2003]

Langou et al. [2006]

Buttari et al. [2007]

Arioli et al. [2007]

Kurzak and Dongarra [2007]

Arioli and Duff [2008]

Sun et al. [2008]

Buttari et al. [2008]

Baboulin et al. [2009]

Hogg and Scott [2010]

Lee and Peterson [2011]

Haidar et al. [2017; 2018;; 2020]

Zounon et al. [2022]

Carson and Higham [2018]

Higham and Pranesh [2021]

Amestoy et al. [2021]

Oktay and Carson [2022]

Amestoy et al. [2022]

Kiełbasiński [1981]

Lee et al. [2018]

Lee et al. [2020]

Oktay and Carson [2022]



3.IT
E

R
AT

IV
E

R
E

F
IN

E
M

E
N

T
H

IST
O

R
Y

57

QR solvers

Golub [1965]

Businger and Golub [1965]

Golub and Wilkinson [1966]

Björck [1967]

Björck and Golub [1968]

Golub [1969]

Bauer [1971]

Stewart [1973]

Fletcher [1975]

Gulliksson [1994]

Demmel et al. [2009]

Higham [1991]

Boley et al. [1995]

Higham [2002]

Carson et al. [2020] Smoktunowicz and Sokolnicka [1990]

Iterative solvers Carson and Higham [2017]
Jankowski and Woźniakowski [1977]

Jankowski and Woźniakowski [1985]

Turner and Walker [1992]

Göddeke et al. [2005]

Strzodka and Göddeke [2006;]

Anzt et al. [2011]

Anzt et al. [2012]

Haidar et al. [2017; 2018;; 2020]

Lindquist et al. [2020]

Loe et al. [2021;]

Lindquist et al. [2022]

Carson and Higham [2018]

Carson et al. [2020]

Higham and Pranesh [2021]

Amestoy et al. [2021]

Oktay and Carson [2022]

Amestoy et al. [2022]

Carson and Khan [2022]

Oktay and Carson [2022]

Multigrid solvers

Göddeke et al. [2007]

Goddeke and Strzodka [2011]

Glimberg et al. [2012]

Sumiyoshi et al. [2014]

Oo and Vogel [2020]

McCormick et al. [2021]

Tamstorf et al. [2021]

Arbitrary solvers

Higham [1997]

Tisseur [2001]

Higham [2002]

Carson and Higham [2017]

Jankowski and Woźniakowski [1977]

Higham [1991]

Higham [1997]

Higham [2002]

Douglas et al. [1990] Carson and Higham [2018]
Smoktunowicz and Sokolnicka [1984]

Lee et al. [2018]





4 State-of-the-art
iterative refinement

Mixed precision iterative refinement is definitely the cornerstone of this Ph.D.
thesis. Roughly, most of the work presented in this manuscript will be about im-
proving linear solvers with different iterative refinement flavors. In chapter 3, we
developed a complete survey gathering and explaining most of the bibliography
on this algorithm. In this chapter, we provide an in-depth technical presentation
of the most advanced iterative refinement algorithms, containing all the theoreti-
cal tools we will need to develop the results of this manuscript.

To this end, we will present and develop in section 4.2 what we call the gen-
eralized form of iterative refinement from which we can derive rounding error
analyses for many iterative refinement variants. Subsequently, we will specifically
focus on two of these variants, which aim at improving direct solvers, using either
an LU solver (LU-IR3) or a GMRES preconditioned by the LU factors (LU-GMRES-
IR3) in sections 4.3 and 4.4. Naturally, these variants can be straightforwardly
extended to any kind of linear system solution based on a factorization of the
matrix A: LDLT, LLT, QR, etc. We will also explain how these two variants can be
adapted to the solution of the least squares problem through QR factorization
in section 4.5, discuss stopping criteria in section 4.6, and summarize the main
results of the different error analyses in section 4.8.

4.1 On the understanding of refining a linear system

As explained in section 3.1, iterative refinement is the application of Newton’s method on

a linear system in inexact arithmetic. It consists in repeating the three following steps

(1) Computing the residual: ri = b −Axi , (4.1)

(2) Solving the correction equation: Adi = ri , (4.2)

(3) Updating the solution: xi+1 = xi +di , (4.3)

59



60 4.1. ON THE UNDERSTANDING OF REFINING A LINEAR SYSTEM

to refine the solution in order to improve its accuracy to some extent. In this section, we

aim to illustrate the refinement process and intuitively explain the role of each of these

steps.

bxi
x

bf (bxi )

f (x ) =
Ax − b

Ò∇ f (bx i)

bxi+1

Figure 4.1: The i th iteration of Newton’s method applied to f (x ) = Ax − b with n = 1 in
the presence of rounding errors. The “green interval” represents the error made on the
computation of the residual (step (4.1)), the “red zone” represents the error made on the
solution of the correction equation (step (4.2)), and the “yellow interval” represents the
error made on the computation of the update (step (4.3)).

Applying Newton’s method in inexact arithmetic creates errors that have two types of

consequences. To illustrate this point, we use Figure 4.1 which is a geometrical interpreta-

tion of Newton’s method; it shows how we can build successive xi converging to the true

solution x by using red tangent lines to the blue curve f (x ) = Ax − b . For the procedure

to be representable on a 2D plane, the linear system is of dimension 1 (i.e., n = 1), so A, x ,

and b are scalars, and the residual is an affine function. In the figure, we have the errors

on the computation of the residual and the update (steps (4.1) and (4.3)) represented in

green and yellow, and the error on the computation and application of the Jacobian matrix

(step (4.2)) represented in red.

The green error comes from the inexact computation of f (bxi ). Because we are not

able to compute the exact quantity f (bxi ), we instead provide a computed quantity bf (bxi )
contained in the (vertical) green interval, which represents the error range of the resid-

ual computation. The yellow error comes from the inexact computation of the new iterate

xi+1 = bxi + bdi . Because of the error we are making in adding the computed correction bdi , we

instead provide the computed quantity bxi+1 contained in the (horizontal) yellow interval,

which represents the error range for the update computation. The green and yellow errors

are not expected to affect much the convergence quality, but they describe the accuracy we

can make our successive xi to converge to. Indeed, the errors on these operations prevent

the computed solution from being improved indefinitely by the successive corrections, and

the size of these errors shall define an accuracy interval on which the iterates xi stagnate



4. STATE-OF-THE-ART ITERATIVE REFINEMENT 61

(from a certain i ). This “accuracy interval” can be interpreted as the limiting accuracy for

the iterative refinement iterates, that is, the accuracy at which we guarantee the iterates to

converge.

The red error comes from the inexact computation and application of∇ f (bxi ); it affects

the slope of the red tangent curve to f (x ) at (bxi , bf (bxi )). The computed tangent is guaranteed

to be contained in the red zone representing the error range of the computation of the

correction equation solution. Because of this error, the red and blue curves are not parallel.

Naturally, in exact arithmetic, the tangent to f (x ) = Ax−b is trivially f at any x , the red and

blue curves should, in that case, overlap and x is obtained after one iteration. This error

affects the convergence speed; the more the red curve is parallel to the blue one, the faster

we converge to the final limiting accuracy. The opposite consequence is that if the red curve

is not sufficiently parallel to the blue one, we might take more iterations to converge or

simply diverge. Therefore, the red error shall describe both the convergence speed and the

condition under which we can converge.

The purpose of Figure 4.1 and its interpretation is only to intuitively understand the

iterative refinement process and what are the impacts of the different rounding errors. In

the following sections, we will develop more formally these different observations.

4.2 Generalized iterative refinement

We now present the generalized form of iterative refinement proposed by Carson and

Higham [45] and the main conclusions resulting from their error analysis. The tools de-

veloped in their article are the basis for almost every latest analysis of iterative refinement,

including the analyses carried out in this manuscript. Therefore, due to their importance

for this work, we carefully recall, contextualize, and explain how to use them.

4.2.1 Preliminaries

The generalized iterative refinement is represented by Algorithm 4.1, it consists in “refin-

ing” a first approximation x0 of the solution of (1.1) to improve its accuracy (as described

by steps (4.1)–(4.3)). In a refinement step, we have the computation of the linear system

residual in precision ur (step 3), the computation of the correction equation in precision

us (step 4), and finally the computation of the update in precision u (step 5). We call it

“generalized” because both the solver used at step 4 and the set of precision ur , us and u

are generic. Therefore, Algorithm 4.1 covers almost all iterative refinement algorithms pro-

posed in the literature so far, except for dynamic change of the precisions (see Kiełbasiński

[135], Oktay and Carson [171]). The advantage of working on Algorithm 4.1 is that any re-

sults derived for this generic algorithm hold for any of its specialization, that is, given a

certain solver at step 4 and a certain combination of precisions (u ,ur ,us ).

In generalized iterative refinement, the solver at step 4 for the solution of the correction

equation is subject to the following conditions on the returned computed solution bdi :

bdi = (I +us Ei )di , us ∥Ei ∥∞ < 1, (4.4)



62 4.2. GENERALIZED ITERATIVE REFINEMENT

Algorithm 4.1 Generalized iterative refinement

Input: an n ×n matrix A and a right-hand side b .
Output: an approximate solution to Ax = b .

1: Initialize x0.
2: while not converged do
3: Compute ri = b −Axi . (ur )
4: Solve Adi = ri . (us )
5: Compute xi+1 = xi +di . (u )
6: end while

∥bri −A bdi ∥∞ ≤ us (c1∥A∥∞∥ bdi ∥∞+ c2∥bri ∥∞), (4.5)

|bri −A bdi | ≤ us Gi | bdi |, (4.6)

where Ei , c1, c2, and Gi are functions of n , A, bri and us and have nonnegative entries. Few

comments on this model:

• us is the accuracy at which the solver delivers the computed solution bdi and is not

necessarily directly related to the unit roundoff of a given precision (despite the no-

tation rules of section 2.1.4). Though, throughout the manuscript, we will abusively

refer to us as a precision for convenience and readability.

• In the same philosophy as the work of Jankowski and Woźniakowski [130], this solver

model is generic enough to cover many kinds of linear solvers: direct or iterative,

backward stable or not. The potential instability of the solver is carried by the terms

Ei , c1, c2, and Gi .

• Conditions (4.4) and (4.5) are required, respectively, for the forward error conver-

gence and the normwise backward error convergence. In contrast, condition (4.6) is

required for the componentwise backward error convergence that we do not cover

in this manuscript but which has been tackled by Carson and Higham [45, sect. 5].

In addition, we will make two assumptions on the precisions:

• We need the unit roundoff of the working precision u to be smaller than the accuracy

at which the solver at step 4 of Algorithm 4.1 delivers bdi , i.e.,

u ≤ us ∥Ei ∥∞. (4.7)

It is relatively natural since bdi is cast in precision u at step 5; thus, bdi will not be more

accurate than u when added to bxi . This assumption is essentially cosmetic and is

made to avoid terms of the form max(u , us ∥Ei ∥∞) in the coming bounds (4.9) and

(4.16).

• Specifically for the normwise backward error analysis, we need to ensure that the

problem is not singular at the solver precision, that is,

c1κ∞(A)us < 1. (4.8)



4. STATE-OF-THE-ART ITERATIVE REFINEMENT 63

4.2.2 Forward and backward errors analyses
We now recall two major results from Carson and Higham [45] that guarantee Algorithm 4.1

to provide a computed solution bx of (1.1) whose forward and backward errors will meet well-

defined limiting accuracies under well-defined convergence conditions. There is one theo-

rem each for the forward and backward errors which are a direct rewriting of [45, Cor. 3.3]
and [45, Cor. 4.2].

Theorem 4.1 (Forward error convergence). Let Algorithm 4.1 be applied to (1.1) where

A ∈Rn×n is nonsingular, and assume the solver used at step 4 satisfies (4.4) and (4.7). As long

as

φi = 2us min(cond(A),κ∞(A)µi ) +us ∥Ei ∥∞ (4.9)

is sufficiently less than 1, the forward error is reduced on the i th iteration by a factor approx-

imativelyφi until an iterate bxi is produced for which

∥x − bx∥∞
∥x∥∞

≲ 4p ur cond(A, x ) +u . (4.10)

Proof. We will only present the core ideas of the proof; the full details can be found in

[45, sect. 3]. The proof consists mainly in expressing the quantities φi and ϵi such that

∥x − bxi+1∥∞ ≤ φi ∥x − bxi ∥∞ + ϵi . Therefore, if φi < 1, the error ∥x − bxi ∥∞ will reduce as

we iterate until it reaches ϵi where, actually, the requirement φi < 1 corresponds to the

convergence condition.

Bounding ∥x − bxi+1∥∞ in terms of ∥x − bxi ∥∞ can be made by observing that

bxi+1 = x +A−1∆ri + ( bdi −A−1
bri ) +∆xi , (4.11)

where∆ri is the error made on the computation of the residual at step 3 in precision ur ,∆xi

is the error made on the computation of the update at step 5 in working precision u , and
bdi −A−1
bri is the forward error made by the solver at step 4 and is defined by condition (4.4).

To bound these different errors, we need to introduce the scalar µi defined such that

∥A(x − bxi )∥∞ =µi ∥A∥∞∥x − bxi ∥∞, (4.12)

and satisfying by definition

∥A(x − bxi )∥∞
∥A∥∞∥x∥∞

=µi
∥x − bxi ∥∞
∥x∥∞

. (4.13)

It can therefore be interpreted as the ratio between the normwise backward error and the

forward error of the original linear system (1.1) for the iterate bxi . This ratio is known to be

at least of order κ∞(A)−1 (see (2.7)), giving

κ∞(A)
−1 ≤µi ≤ 1. (4.14)

With this quantity, we can bound ∥b −Abxi ∥∞ = ∥A(x − bxi )∥∞ in terms of ∥x − bxi ∥∞. We do

not provide the details on bounding these errors, but they can be found in [45, sect. 3].



64 4.2. GENERALIZED ITERATIVE REFINEMENT

Using (4.11) with the bounds on∆ri ,∆xi , and bdi −A−1
bri gives

∥x − bxi+1∥∞ ≲ (2us min(cond(A),κ∞(A)µi ) +us ∥Ei ∥∞)∥x − bxi ∥∞ (4.15a)

+2p ur cond(A, x )(∥x∥∞+ ∥bxi ∥∞) +u∥bxi+1∥∞, (4.15b)

where we can identify φi and ϵi . The limiting accuracy (4.10) is obtained from ϵi and by

assuming that from a certain iteration i we have ∥xi ∥∞ ≈ ∥xi+1∥∞ ≈ ∥x∥∞.

The convergence condition (4.9) is made of the two terms 2us min(cond(A),κ∞(A)µi )
and us ∥Ei ∥∞, where the first one depends on the quantity µi previously introduced. In

practice, we observed that µi is constant over the iterations, near its lower bound κ(A)−1

(see (4.14)), until the backward error converges. Once the backward error has converged to

double precision accuracy (say), the ratio between the backward and the forward error will

increase if the forward error shall also converge to double precision accuracy. Therefore,

near the end of the iterations,µi , which quantifies this ratio, is expected to increase. Another

interpretation of this quantity is proposed in [44, sect. 2.1]. In particular, it means thatφi will

most probably be dominated by the term us ∥Ei ∥∞ rather than by 2us min(cond(A),κ∞(A)µi ),
at least, until the backward error converges. Thus, we will generally focus on the term

us ∥Ei ∥∞ when working on boundingφi , and we will ignore the other.

Turning our attention to the limiting accuracy (4.10), we can observe that the term

in ur carries the conditioning of the problem cond(A, x ). Consequently, when we choose

ur = u , the forward error of the computed solution should be of order u cond(A, x ). It is

possible to remove this dependence on the conditioning by choosing ur ≪ u , such that

ur cond(A, x )≤ u . In doing so, we can obtain a forward error of order u . It is not meaningful

to set ur > u .

Theorem 4.2 (Backward error convergence). Let Algorithm 4.1 be applied to (1.1) where

A ∈Rn×n is nonsingular and satisfies c1κ∞(A)us < 1, and assume the solver used at step 4

satisfies (4.5) and (4.7). As long as

φ = us (c1κ∞(A) + c2) (4.16)

is sufficiently less than 1, the residual is reduced on each iteration by a factor approximatively

φ until an iterate bxi is produced for which

∥b −Abxi ∥∞ ≲ γr
p (∥b ∥∞+ ∥A∥∞∥bxi−1∥∞) +u∥A∥∞∥xi ∥∞. (4.17)

Proof. The proof follows the same philosophy as the proof of Theorem 4.1. We want to

express the quantity φ and ϵi such that ∥b − Abxi+1∥∞ ≤ φ∥b − Abxi ∥∞ + ϵi . Bounding

∥b −Abxi+1∥∞ in terms of ∥b −Abxi ∥∞ can be made by observing that

Abxi+1− b =∆ri +A bdi − bri +A∆xi , (4.18)

where∆ri and∆xi are the same as in the proof of Theorem 4.1. It remains to bound A bdi−bri ,



4. STATE-OF-THE-ART ITERATIVE REFINEMENT 65

with condition (4.5) we have

∥A bdi − bri ∥∞ ≤ us (c1∥A∥∞∥ bdi ∥∞+ c2∥bri ∥∞) (4.19a)

≤ us (c1∥A∥∞∥A−1∥∞(∥bri ∥∞+ ∥A bdi − bri ∥∞) + c2∥bri ∥∞), (4.19b)

where, under the assumption (4.8), we obtain

∥A bdi − bri ∥∞ ≤ us
c1κ∞(A) + c2

1− c1κ∞(A)us
∥bri ∥∞. (4.20)

Using (4.18) with the bounds on∆ri ,∆xi , and A bdi − bri gives

∥b −Abxi+1∥∞ ≲ us (c1κ∞(A) + c2)∥b −Abxi ∥∞ (4.21a)

+γr
p (∥b ∥∞+ ∥A∥∞∥bxi ∥∞) +u∥A∥∞∥xi+1∥∞, (4.21b)

where we can identify φ and ϵi . We skipped the details for obtaining this last bound, but

they can be found in [45, sect. 4].

Making the reasonable assumption that ∥bxi−1∥∞ ≈ ∥bxi ∥∞, we can conclude from The-

orem 4.2 that
∥b −Abxi ∥∞

∥b ∥∞+ ∥A∥∞∥xi ∥∞
≲ p (u +ur ). (4.22)

Therefore, if ur = u , generalized iterative refinement is guaranteed to offer a backward

stable solution for Ax = b to the working precision u . An important aspect of this result

is that, considering the fixed precision case where ur = u = us , iterative refinement can

transform a potentially unstable solver (under condition (4.5)) into a backward stable one.

In particular, if we consider a direct LU solver, the presence of large element growth dur-

ing the factorization is a well-known issue that prevents the stability (see sections 2.2.1.2

and 2.2.3.7), but this can be rectified by the use of iterative refinement.

4.2.3 Various practical comments
Theorems 4.1 and 4.2 are the current standard tools to guarantee stability and convergence

of mixed precision iterative refinement algorithms. They have been extensively used on

most of the recent iterative refinement analyses: Carson and Higham [45], Carson et al. [47],
Amestoy et al. [18], Oktay and Carson [171], Amestoy et al. [19], Carson and Khan [46], includ-

ing the contributions that will be presented in this manuscript. We make some comments

on these major results:

• To derive stability results for a given specialized iterative refinement algorithm, we

just need to determine Ei , c1, c2 and us for the chosen linear solver used at step 4.

The theorems will then guarantee the convergence of the errors to the limiting accu-

racies (4.10) and (4.17) at the convergence rates (4.9) and (4.16).

• A central property stated by these theorems is that the limiting accuracies are only

determined by the precision u and ur and are independent of the solver used at step 4.



66 4.3. LU-IR3

On the other hand, the convergence properties (rate and ability) are only determined

by the accuracy at which the solver computes bdi . It is consistent with the intuitions

developed in section 4.1 from the illustration Figure 4.1.

• Since the backward error is expected to be lower than the forward error (see (2.7)),

Theorem 4.1 implicitely covers the convergence of the normwise backward error

of (1.1) as well. What makes Theorem 4.2 different is that it guarantees a stronger

limiting accuracy for the backward error. Particularly, we do not have dependence

on the system’s conditioning cond(A, x ) even when ur = u .

4.2.4 Targeting low precisions
Iterative refinement has become very attractive nowadays because it can potentially im-

prove the computing performance of many kinds of linear solvers for the solution of (1.1).

The strategy consists in using low resource demanding low precision(s) (see section 2.1.3)

in the solver at step 4 while refining in higher precision with u , ur ≪ us for step 3 and

5. As the application of the solver should be the most computationally demanding part,

the use of low precision(s) can potentially bring substantial performance improvements

for the computation of the solution. This strategy was popularized in the 2000s (see sec-

tion 3.4) and covers different kinds of linear solvers; for example, direct solvers with Langou

et al. [137], iterative solvers with Strzodka and Göddeke [198], and multigrid solvers with

Göddeke et al. [88].

4.3 LU-IR3
When we specialize the solver at step 4 of Algorithm 4.1 to be an LU solver applied in

precision u f (see section 2.2.1), we call the algorithm LU-based iterative refinement in three

precisions (LU-IR3) (Carson and Higham [45]). The “three precisions” stands for the ability

to independently set the precisions u f , u , and ur . We describe LU-IR3 in Algorithm 4.2,

where it should be noted that, as the computed LU factors bL and ÒU stay identical over the

iterations, we rather factorize once at step 1 and use the same computed factors throughout

all the iterations. As iterative refinement has been first used with GE, LU-based iterative

refinement is generally considered as the traditional form of iterative refinement.

Algorithm 4.2 LU-IR3

Input: an n ×n matrix A and a right-hand side b .
Output: an approximate solution to Ax = b .

1: Factorize A = bLÒU . (u f )
2: Solve bLÒU x0 = b for x0. (u f )
3: while not converged do
4: Compute ri = b −Axi . (ur )
5: Solve bLÒU di = ri for di . (u f )
6: Compute xi+1 = xi +di . (u )
7: end while



4. STATE-OF-THE-ART ITERATIVE REFINEMENT 67

4.3.1 Error analysis
Using the generalized iterative refinement theorems of section 4.2, we can derive the fol-

lowing result for LU-IR3.

Theorem 4.3 (Convergence of LU-IR3). Let (1.1) be solved by LU-IR3 (Algorithm 4.2) using

GEPP at step 1. Ifκ(A)u f ≥ u, then the forward and backward errors will reach their respective

limiting accuracies

p ur cond(A, x ) +u (forward) and p ur +u (backward), (4.23)

provided that

u f κ(A)≪ 1 (forward and backward). (4.24)

Proof. Solving the correction equation at step 5 with a GEPP applied in precision u f will

deliver a computed solution bdi such that

∥bri −A bdi ∥∞
∥A∥∞∥ bdi ∥∞

≤ f (n ,ρn )u f ,
∥di − bdi ∥∞
∥di ∥∞

≤ f (n ,ρn )κ∞(A)u f , (4.25)

which is obtained from Theorem 2.6, and where f (n ,ρn ) is a function of n and ρn . We

can identify us ≡ u f , ∥Ei ∥∞ ≡ f (n ,ρn )κ∞(A), c1 ≡ f (n ,ρn ), and c2 ≡ f (n ,ρn ). As stated in

section 2.2.1.2, with GEPP we expectρn to be small, therefore, dropping f (n ,ρn ), applying

Theorems 4.1 and 4.2, and dropping the remaining constants in the convergence condition

ends the proof. Note that condition κ(A)u f ≥ u translates (4.7), and that condition (4.8) is

implicitly included in the convergence condition (4.24).

4.3.2 Targeting low precisions
As the factorization is expected to be the dominant operation (O (n 3) flops for dense sys-

tems), a well-known strategy to accelerate an LU direct solver is to set u f to low precision.

While the solution x0 computed at step 2 will have a low accuracy, the refinement steps in

high precision (i.e., u , ur ≤ u f ), supposed negligible compared with the factorization in u f

(O (n 2) flops for dense systems), will improve the solution to its limiting accuracies at a low

cost.

Necessarily, this strategy is only applicable if the method can converge. When looking

at the convergence condition (4.24), we observe that the ability of LU-IR3 to refine the

solution to higher accuracy depends only on the capacity of u f ≪ 1 to compensate the

term κ(A)≫ 1. It means that if we are using low precision to compute the factorization, we

will be constrained to process problems with small condition numbers (e.g., with u f = fp16

condition (4.24) becomes κ(A)≪ 2×103).

4.4 LU-GMRES-IR3
The restrictive convergence condition of LU-IR3 when very low precision factorization is

employed motivated the conception of a new iterative refinement algorithm called LU pre-



68 4.4. LU-GMRES-IR3

conditioned GMRES-based iterative refinement in three precisions (LU-GMRES-IR3). With

LU-GMRES-IR3, we specialize the solver at step 4 of Algorithm 4.1 to be a left-preconditioned

GMRES by the LU factors computed in precision u f (see section 2.3.1), where this GMRES

applies all its operations in precision u except the preconditioned matrix–vector product

applied in a higher precision u 2. We describe LU-GMRES-IR3 in Algorithm 4.3, where it

should be noted that on line 5 eA is not explicitly formed, but its action on a vector is ob-

tained with a matrix multiplication followed by two triangular solves. To avoid ambiguity,

we will often refer to the iterations of iterative refinement as the outer iterations and the

iterations of GMRES as the inner iterations.

Algorithm 4.3 LU-GMRES-IR3

Input: an n ×n matrix A and a right-hand side b .
Output: an approximate solution to Ax = b .

1: Factorize A = bLÒU . (u f )
2: Solve bLÒU x0 = b for x0. (u f )
3: while not converged do
4: Compute ri = b −Axi . (ur )
5: Solve ÒU −1

bL−1Adi = ÒU −1
bL−1ri by GMRES at precision u with matrix–vector products

with eA = ÒU −1
bL−1A computed at precision u 2.

6: Compute xi+1 = xi +di . (u )
7: end while

4.4.1 Error analysis
Using the generalized iterative refinement’s theorems of section 4.2, we can derive the

following result for LU-GMRES-IR3.

Theorem 4.4 (Convergence of LU-GMRES-IR3). Let (1.1) be solved by LU-GMRES-IR3 (Al-

gorithm 4.3) using MGS-GMRES at step 5 and using GEPP at step 1. If κ(A)u ≤ 1, the forward

and backward errors will reach their respective limiting accuracies

p ur cond(A, x ) +u (forward) and p ur +u (backward), (4.26)

provided that

u f u 1/2κ(A)≪ 1 (forward) and u 1/2
f u 1/2κ(A)≪ 1 (backward). (4.27)

Proof. As LU-GMRES-IR3 is a specialization of LU-GMRES-IR5 that we will introduce and

study in chapter 5 of this manuscript, using Theorem 5.1 with the precision parameters

ug and up (introduced in this chapter as well) set to up = u 2 and ug = u gives the result

directly.

For the original proof, we refer the reader to Carson and Higham [44, sect. 3] and Car-

son and Higham [45, sect. 8]. We will not attempt to rewrite it because it would be long

and redundant with the proof in chapter 5, we instead provide the essential ideas in the

following.



4. STATE-OF-THE-ART ITERATIVE REFINEMENT 69

As for the proof of Theorem 4.3, we need to identify us , ∥Ei ∥∞, c1, and c2 to make use of

Theorems 4.1 and 4.2. To do so, we must determine bounds for the forward and backward

errors of the computed solution of the correction equation Adi = bri . As MGS-GMRES actu-

ally solves the preconditioned system eAdi = si , where eA = ÒU −1
bL−1A and si = ÒU −1

bL−1
bri , we

proceed as follows: we first bound the error si−bsi in forming the preconditioned right-hand

side, we show that the backward stability property of MGS-GMRES proved by Paige et al.

[176] for the solution of unpreconditioned systems holds for the solution of the precondi-

tioned system eAdi = bsi where eA is applied in precision u 2 and the rest of the operations in

precision u , we use these previous results to determine bounds on the forward and back-

ward error of the original system Adi = bri , from these bounds we identify the different terms

as us ≡ u , ∥Ei ∥∞ ≡ f (n , k ,ρn )κ∞( eA), c1 ≡ f (n , k ,ρn )∥ eA∥∞, and c2 ≡ f (n , k ,ρn )κ∞(A) and

conclude on the convergence conditions of LU-GMRES-IR3. The constant k corresponds

to the maximum number of GMRES inner iterations over the outer iterations.

Note that condition (4.7) is met and (4.8) is implicitly included in the normwise back-

ward convergence condition (4.27). The condition κ(A)u ≤ 1 allows for simplifications of

the form κ(A)u 2 ≤ u and is used especially by Carson and Higham [44] to show that the

backward stability result of Paige et al. [176] still holds.

Actually, the condition on the backward error is stricter than what has been proposed

in Carson and Higham [45] (i.e., uκ(A)≪ 1). The reason for this discrepancy is that they

assumed that c1 ≡ 1 in (4.16), which is too optimistic in general.

4.4.2 LU-GMRES-IR3 vs LU-IR3

LU-GMRES-IR3 is more resilient on the conditioning of the problem since conditions (4.27)

(for LU-GMRES-IR3) are looser than condition (4.24) (for LU-IR3) (e.g., with u f = fp16 and

u = fp64 we obtain the condition κ(A)≪ 2× 1011 on the forward error, which is far more

permissive than the previous condition κ(A)≪ 2×103). It means both that the method can

achieve convergence for more ill-conditioned problems and that it can converge at a faster

rate (i.e., less outer iterations). In Table 4.1, we compare the convergence conditions of the

forward error of LU-IR3 and LU-GMRES-IR3 for different precision u f .

Table 4.1: Condition on κ(A) for the convergence of the forward error with LU-IR3 and LU-
GMRES-IR3 for different precision u f and with u = D fixed. The symbols D, S, H, B, and R

refer to the arithmetics of Table 2.1.

u f LU-IR3 LU-GMRES-IR3

R 2×101 2×109

B 3×102 2×1010

H 2×103 2×1011

S 2×107 2×1015

One major difference between LU-GMRES-IR3 and LU-IR3 is that the LU factors are

applied in a high precision u 2 instead of the low precision u f . Specifically, it means that

for the same set of precision u f , u , and ur an outer iteration of LU-GMRES-IR3 is more



70 4.5. EXTENSION TO LEAST SQUARES PROBLEM

expensive in execution time and possibly in memory consumption than an iteration of

LU-IR3. It is because, first, the application of the LU factors in precision u 2 is expected to

be more costly in time than the application of these factors in precision u f . Second, the

factors computed in precision u f will need to be cast at some point in precision u 2, and,

depending on if we choose to store the factors in precision u 2 fully, LU-GMRES-IR3 can

increase the memory consumption. However, LU-GMRES-IR3 will do less outer iterations

than LU-IR3; therefore, it is not straightforward to predict if LU-GMRES-IR3 will be more

expensive than LU-IR3 as a whole, and if it is the case, to estimate how much more expen-

sive it is. Comparisons between practical implementations of LU-GMRES-IR3 and LU-IR3

have been made for dense systems by Haidar et al. [102; 103; 104], a comparison for sparse

systems is the topic of chapter 6 of this manuscript.

4.4.3 GMRES-IR

We refer more generally to the class of iterative refinement algorithms that use a GMRES

solver at step 4 of Algorithm 4.1 by GMRES-based iterative refinement (GMRES-IR). Hence,

LU-GMRES-IR3, which uses a left-preconditioned GMRES by the LU factors, is a represen-

tative of this class, but it is not the only one. For instance, there are studies using GMRES-IR

with other various kinds of preconditioners: ILU (Lindquist et al. [148]), polynomial (Loe

et al. [152]), or approximate inverse (Carson and Khan [46]).

Actually, as we will explain in more detail in chapter 7, restarted GMRES can be seen as a

form of GMRES-IR. Therefore, GMRES-IR is a relatively old approach; from our knowledge,

its first mixed precision implementation has been proposed by Turner and Walker [206]
who used u = ur ≤ us .

4.5 Extension to least squares problem

Mixed precision iterative refinement can be extended to improve the solution of the least

squares problem (2.25) as well. We will review three main ways to do it, where the last one

is probably the most versatile and robust.

4.5.1 Iterative refinement on the normal equations

One of the most straightforward ways is to use iterative refinement for the solution of the

normal equations (2.26), that is, using LU-IR3 or LU-GMRES-IR3 on the system AT Ax =
AT b by replacing the LU factors with the Cholesky factors. However, this is also one of the

least robust approaches since the conditioning of this system satisfies κ(A)2 ≤ f (n )κ(AT A),
which strongly restrict the respective convergence conditions (4.24) and (4.27). For example,

with u f = fp16 and u = fp64, condition (4.24) becomes κ(A)≪ 5×101 and condition (4.27)

becomes κ(A)≪ 4×105. Actually, in this configuration, LU-IR3 becomes almost unusable

with a low precision factorization. The use of LU-GMRES-IR3 for the solution of (2.25) with

the normal equation has been explored by Higham and Pranesh [121].



4. STATE-OF-THE-ART ITERATIVE REFINEMENT 71

4.5.2 Iterative refinement on the overdetermined system

Another early approach to solve (2.25) through iterative refinement was proposed by Golub

[89] and used by Bauer [31]. It is described and extended to three precisions in Algorithm 4.4;

it can be noted that the original algorithm is in two precisions u f = u ≥ ur . This approach

can be viewed as the application of LU-IR3 on the overdetermined system Ax = b , where we

replace the LU factorization with the QR one. For this reason, we call the method QR-based

iterative refinement in three precisions (QR-IR3).

Algorithm 4.4 QR-IR3

Input: an m ×n matrix A and a vector b .
Output: an approximate solution to minx ∥b −Ax∥2.

1: Factorize A =
�

ÒQ1
ÒQ2

�

�

bR
0

�

. (u f )

2: Solve bR x0 = ÒQ T
1 b for x0. (u f )

3: while not converged do
4: Compute ri = b −Axi . (ur )
5: Solve mindi

∥ri −Adi ∥2 (eq. Solve bR di = ÒQ T
1 ri for di ). (u f )

6: Compute xi+1 = xi +di . (u )
7: end while

While this proposition is simple and computationally efficient, it does not actually work

for the general case. If we define f (x ) = Ax −b , there might not be any x such that f (x ) = 0

because the overdetermined system Ax = b does not have a solution in general. Therefore,

QR-IR3 can be interpreted as the application of Newton’s method for finding a zero of a

function f that does not have a zero. While it might sound absurd at first, doing so has

some sense, and in the following we will try to provide a rough intuition of why.

(4.18) and (4.11) tell us that the errors on the (i +1)th iterate bxi+1 depend on the terms

A−1∆ri ,∆xi , and A bdi − bri (or bdi −A−1
bri ). While the evaluation of the first two terms does

not change in comparison with the square linear system case, the last term is now bounded

by (2.32), that is,

∥bri −A bdi ∥∞ ≤ f (n , m )(∥|bri |+ |A||di |∥∞+ cond2(A
T )∥bri −Adi ∥∞)u f (4.28)

+ ∥bri −Adi ∥∞.

In particular, this bound shows that the quality of the computed correction bdi might be of

order ∥bri −Adi ∥∞ = ∥b −A(bxi +di )∥∞ =minx ∥b −Ax∥∞, and thus, if minx ∥b −Ax∥∞≫ 1,

the computed correction bdi will be too poor, and the method will not converge. On the other

hand, for nearly consistent overdetermined systems (i.e., minx ∥b − Ax∥2 close to 0), the

term ∥|bri |+ |A||di |∥∞u f might become dominant. In this case, iterative refinement will

improve the solution. This observation has been previously made by Golub and Wilkinson

[92].



72 4.5. EXTENSION TO LEAST SQUARES PROBLEM

4.5.3 Iterative refinement on the augmented system

The two previous approaches described in sections 4.5.1 and 4.5.2 present major down-

sides: either we are restricted to working with well-conditioned systems or with consistent

overdetermined ones. To relax these restrictions, Björck [32] proposed to use iterative re-

finement for the solution of the augmented system

A+z = b+, A+ =

�

I A

AT 0

�

, z =

�

r

x

�

, b+ =

�

b

0

�

, (4.29)

which is, in exact arithmetic, an equivalent problem to the normal equations (2.26). As the

augmented system is a square linear system, iterative refinement can be applied “as usual”

and will refine the solution [r T x T ]T . We call the method QR-based iterative refinement on

the augmented system in three precisions (AQR-IR3), and it is described in Algorithm 4.5.

Algorithm 4.5 AQR-IR3

Input: an m ×n matrix A and a right-hand side b .
Output: an approximate solution to minx ∥b −Ax∥2.

1: Factorize A =
�

ÒQ1
ÒQ2

�

�

bR
0

�

. (u f )

2: Solve bR x0 = ÒQ T
1 b for x0. (u f )

3: while not converged do

4: Compute

�

hi

g i

�

=

�

b − ri −Axi

−AT ri

�

. (ur )

5: Solve

�

I A
AT 0

��

dri

dxi

�

=

�

hi

g i

�

for

�

dri

dxi

�

. (u f )

6: Compute

�

ri+1

xi+1

�

=

�

ri

xi

�

+

�

dri

dxi

�

. (u )

7: end while

Note that, at step 1, we are not doing an LU factorization of the matrix of the augmented

system itself (4.29), but we rather compute the QR factorization of A. The solve at step 5 is

readily affected, and to solve the correction equation

�

I A

AT 0

��

dri

dxi

�

=

�

hi

g i

�

(4.30)

we proceed as follows:

f =R−T g i ,

�

k1

k2

�

=Q T hi , (4.31a)

dri
=Q

�

f

k2

�

, dxi
=R−1(k1− f ). (4.31b)

In particular, we apply the factors R and Q twice, which makes step 5 of Algorithm 4.5

two times more costly than Algorithm 4.4 and should increase the time cost of a refine-



4. STATE-OF-THE-ART ITERATIVE REFINEMENT 73

ment step. While the factorization at step 1 is still expected to be dominant compared

with a refinement step, the execution time might become more sensitive to the number of

iterations.

As (4.29) is a square linear system, the results in section 4.2 apply, and from the analysis

in Carson et al. [47]we can derive the following theorem for AQR-IR3.

Theorem 4.5 (Convergence of AQR-IR3). Let (1.1) be solved by AQR-IR3 (Algorithm 4.5)

using the Householder method at step 1. Then the forward and backward errors of the aug-

mented system (4.29) will reach their respective limiting accuracies

p ur cond(A+, z ) +u (forward) and p ur +u (backward), (4.32)

provided that

u f κ(A+)≪ 1 (forward and backward). (4.33)

Proof. The proof is relatively similar to the one of Theorem 4.3. The main change in the

analysis is located at step 5 for the application of the solve where we need to use [47,

Thm. 2.1].

Carson et al. [47] stated that with the following scaling on the augmented matrix

A+,α ≡
�

αI A

AT 0

�

(4.34)

using a proper parameter α=σmin(A), κ(A+,α) is the same order of magnitude as κ(A) and,

therefore, the convergence condition (4.33) can rather be interpreted in terms of κ(A).
As for the square linear system case, this technique can improve the accuracy of the

computed solution of the least squares problem substantially in comparison with a direct

solver based on a QR factorization (see section 2.2.2). For the latter, the forward error on

the computed residual br satisfies (2.31) and depends on the precision u f at which the

factorization has been computed and on the condition number of A. From (4.32), we know

that AQR-IR3 instead provides an accuracy depending on the working precision u , and if

we choose ur ≪ u , we can even remove the dependence on the condition number.

Carson et al. [47] also proposed to adapt LU-GMRES-IR3 for the LS case. The new

method is represented by Algorithm 4.6 and uses the augmented system strategy; we call

it QR preconditioned GMRES-based iterative refinement on the augmented system in three

precisions (AQR-GMRES-IR3). As we are working with the augmented system, we cannot

simply use a preconditioner of the form M = ÒQ ÒU in the same manner as for LU-GMRES-

IR3. Therefore, Carson et al. [47] proposed the following preconditioner built from the

computed QR factors

M =

�

αI ÒQ1 bR
bR T
ÒQ T

1 0

�

, M −1 =

� 1
α (I −ÒQ1
ÒQ T

1 ) ÒQ1 bR
−T

bR−1
ÒQ T

1 −αbR−1
bR−T

�

. (4.35)

If the factors are computed in exact arithmetic, we have M −1A+,α = I .



74 4.5. EXTENSION TO LEAST SQUARES PROBLEM

Algorithm 4.6 AQR-GMRES-IR3

Input: an m ×n matrix A and a right-hand side b .
Output: an approximate solution to minx ∥b −Ax∥2.

1: Factorize A =
�

ÒQ1
ÒQ2

�

�

bR
0

�

. (u f )

2: Solve bR x0 = ÒQ T
1 b for x0. (u f )

3: while not converged do

4: Compute

�

hi

g i

�

=

�

b − ri −Axi

−AT ri

�

. (ur )

5: Solve M −1A+,α

�

dri

dxi

�

=M −1

�

hi

g i

�

by GMRES at precision u with matrix–vector prod-

ucts with eA+ =M −1A+,α computed at precision u 2.

6: Compute

�

ri+1

xi+1

�

=

�

ri

xi

�

+

�

dri

dxi

�

. (u )

7: end while

As (4.29) is a square linear system, the results in section 4.2 applies, and we can derive

the following theorem for AQR-GMRES-IR3.

Theorem 4.6 (Convergence of AQR-GMRES-IR3). Let (1.1) be solved by AQR-GMRES-IR3

(Algorithm 4.6) using MGS-GMRES at step 5 and using the Householder method at step 1. If

κ(A)u < 1, the forward and backward errors will reach their respective limiting accuracies

p ur cond(A+, z ) +u (forward) and p ur +u (backward), (4.36)

provided that

u f u 1/2κ(A)≪ 1 (forward) and u 1/2
f u 1/2κ(A)≪ 1 (backward). (4.37)

Proof. As AQR-GMRES-IR3 is a specialization of AQR-GMRES-IR5 that we will introduce

and study in chapter 5 of this manuscript, using Theorem 5.4 with the precision parameters

ug and up (introduced in this chapter as well) set to up = u 2 and ug = u gives the result

directly.

For the original proof, we refer the reader to Carson et al. [47, sect. 3.1]. It is relatively

similar to the proof of Theorem 4.4, the main difficulty being the more complex application

of the preconditioned matrix eA+.

In Theorem 4.6, the convergence conditions (4.37) are directly expressed with κ(A)
rather than κ(A+) because we suppose that we apply the scaling (4.34).

While the preconditioner defined by (4.35) has interesting theoretical properties guar-

anteeing the validity of Theorem 4.6, it has, unfortunately, poor practical interests. Indeed,

we need to apply four times ÒQ1 and four times bR−1 at each iteration of GMRES to use it,

which would increase the cost of the refinement steps severely. That is why Carson et al.



4. STATE-OF-THE-ART ITERATIVE REFINEMENT 75

[47] rather encourage using a cheaper preconditioner for Algorithm 4.6

M1M2 ≡
�p
αI 0

0 1p
α
bR T

��p
αI 0

0 1p
α
bR

�

=

�

αI 0

0 1
α
bR T
bR

�

. (4.38)

The two–sided application gives

M −1
1 A+,αM −1

2 =

�

I A bR
bR−T AT 0

�

(4.39)

which only requires two applications of bR .

4.6 Stopping criteria
As for any iterative process, it is of practical interest to be able to stop the algorithm at the

right moment, for instance, when the solution accuracy is satisfactory or if we want to abort

the process because the convergence is too slow or impossible. In iterative refinement, the

convergence is really predictable and fully driven by the convergence rates (4.9) and (4.16).

However, these convergence rates can depend on quantities that cannot be measured eas-

ily; in particular, the ones of LU-IR3 and LU-GMRES-IR3 depend on κ(A) that cannot be

computed inexpensively in general. Therefore, (4.9) and (4.16) cannot be used directly to

stop the algorithm.

Demmel et al. [60] propose to stop the iterative refinement algorithm if any of the fol-

lowing three conditions applies. These conditions are based on the available computed

quantities bdi+1, bdi , and bxi at each iteration of Algorithm 4.1.

• ∥ bdi+1∥∞/∥bxi ∥∞ ≤ u : The relative computed correction bdi+1 is lower than the work-

ing accuracy at which the computed solution converges, so the computed solution

bxi+1 will not improve bxi . It means that the solution has converged, and we can stop

the algorithm. This condition is only valid when ur cond(A, x )≤ u , that is, when the

limiting accuracy of the forward error does not depend on the condition number of

A. As ∥ bdi+1∥∞/∥bxi ∥∞ is an upper bound of the forward error, we can also choose to

stop the algorithm before reaching the working accuracy. We just need to replace u

on the right-hand side of the bound with a targeted accuracy for the forward error.

• ∥ bdi ∥∞/∥ bdi+1∥∞ ≤ ρt : The convergence rate is smaller than a prescribed quantity

ρt . The convergence rate is measured by comparing the order of magnitude between

the corrections from an iteration to the next. As the convergence rate is supposed

to be approximately constant (if the solver properties us , Ei , c1, and c2 are relatively

constant), when it begins to decrease to finally become smaller thanρt , it means that

either: we have converged and the algorithm can be stopped, or we consider that the

convergence rate is too slow and we abort the process.

• i > it : The number of iterations exceeded a prescribed maximum number of itera-

tions it .



76 4.7. SCALING

Actually, the implemented stopping criteria in Demmel et al. [60] are more sophisticated

because they track both the normwise and componentwise convergence. It allows them to

stop the algorithm once the solution does not improve in both the normwise and compo-

nentwise sense.

The way we set ρt < 1 and it defines how “cautious” or “aggressive” we are. The more

we are aggressive (i.e., ρt and it high), the more we allow the algorithm to use resources to

solve a difficult problem. The risk is to put much computational effort before stopping on

a problem that will not converge. On the other hand, the more we are cautious (i.e.,ρt and

it small), the quicker we will break if the convergence is difficult. While this is the optimal

configuration to avoid wasting computational resources, the algorithm might break on a

problem where convergence is actually possible.

4.7 Scaling
We have seen that using low precision for the factorization with LU-IR3, LU-GMRES-IR3,

AQR-IR3 and AQR-GMRES-IR3 restricts their respective conditions for convergence; in par-

ticular, the conditions of LU-IR3 and AQR-IR3 become very restrictive. However, we face

additional difficulties when dealing with low precision factorization, namely the under-

flows and overflows. These phenomena, described in section 2.1.1, occur when an entry

is outside the range of representation of the low precision arithmetic. In the case of over-

flow, the entry is rounded to ± inf. In the case of underflow, the entry is rounded to 0. If we

suppose that the factorization is done in a low precision u f , we can underflow or overflow

when the original matrix A is cast to precision u f and when we compute the entries of the

factors. For instance, in the case of fp16, any number approximately outside of the interval

[10−5, 105] (subnormal numbers not considered) will overflow or underflow (see Table 2.1).

Unfortunately, many matrices from real-life or industrial applications in this manuscript

have entries outside this range. This problem is getting even worse with lower precision,

such as fp8.

Underflows can cause a severe loss of information, and the cast of nonzero entries to

zeros can even transform a nonsingular matrix into a structurally singular one. Overflows

are even worse because a factorization cannot produce useful results for a matrix with

infinities among the entries. In this context, Higham et al. [122] proposed a scaling algo-

rithm to avoid the overflows entirely and limit as much as possible the underflows when

casting the matrix A to precision u f . The strategy is as follows. We first apply a two-sided

diagonal scaling which guarantees that the largest entry in absolute value is no more than

1. Second, we multiply the matrix by a scalar λwhich shifts the entries of the matrix closer

to the maximum representable value of u f that we note y
( f )

max. This strategy is described in

Algorithm 4.7.

Hence, in Algorithm 4.7, R AS is A but with its entries balanced such that maxi , j |(R AS )i , j | ≤
1. We define λ= θ y

( f )
max/β which scales the entries of R AS nearer to y

( f )
max; λ depends on the

parameter θ ∈ (0, 1]which defines how close we map the highest entry of R AS in absolute

value to y
( f )

max, so, if θ = 1, the highest entry in absolute value is y
( f )

max. The two-sided scaling

avoids the overflows while the scaling by λ reduces the underflows by increasing the size



4. STATE-OF-THE-ART ITERATIVE REFINEMENT 77

Algorithm 4.7 Squeezing a matrix to precision u f

Input: an n ×n matrix A and a parameter θ ∈ (0, 1].
Output: a scaled and rounded matrix A( f ) of A in precision u f .

1: T W O - S I D E D D I A G O N A L S C A L I N G :
2: for i = 1, . . . , n do
3: ri = ∥Ai ,1:n∥−1

∞
4: end for
5: R = diag(r )
6: eA =R A
7: for j = 1, . . . , n do
8: s j = ∥ eA1:n , j ∥−1

∞
9: end for

10: S = diag(s )
11: S C A L E A N D R O U N D :
12: Let β be the maximum magnitude of any entry of R AS

13: λ= θ y
( f )

max/β
14: A( f ) = fl f (λ(R AS ))

of the entries in absolute value.

While choosing the highestλwould prevent as much as possible the underflows during

the cast of A in precision u f , it can also be dangerous to choose it too high when we need

to proceed to the factorization after. Indeed, if we consider the LU factorization, the entries

in the factors can get larger in magnitude than A. This increase is quantified by the growth

factor, which can be quite large even with a stable pivoting strategy such as partial pivoting

(see section 2.2.1.2). Therefore, with a too high λ, there is a high risk of overflow during the

factorization and, so, we should choose it small enough to guarantee that the entries of the

factors do not exceed y
( f )

max.

4.8 Summary
The previous iterative refinement variants presented (i.e., LU-IR3, LU-GMRES-IR3, AQR-

IR3, and AQR-GMRES-IR3) are all built around a direct solver (either an LU or QR one).

They are the foundations of the work developed in chapters 5 and 6. We summarize in

Table 4.2 their respective convergence conditions for the forward and backward errors. If

these conditions are met, the solution of (1.1) is guaranteed to reach the corresponding

limiting accuracies listed in Table 4.3.

We listed in section 3.6 four different ways to use iterative refinement. We now clarify

for which setting of precisions u , us , and ur in Algorithm 4.1 we target these different uses:

• 1: ur ≤ u = us . Get a better forward error without dependence on the condition

number.

• 2: u = us = ur . Recover backward stability when the solver at step 4 is unstable. This

property is also valid for the previous setting.



78 4.8. SUMMARY

Table 4.2: Summary of the different convergence conditions on the forward and normwise
backward errors for the previously reviewed iterative refinement algorithms.

Algorithm Forward error Backward error

Generalized 2us min(cond(A),κ(A)µi ) +us ∥Ei ∥≪ 1 us (c1κ(A) + c2)≪ 1
LU-IR3 u f κ(A)≪ 1 u f κ(A)≪ 1

LU-GMRES-IR3 u f u 1/2κ(A)≪ 1 u 1/2
f u 1/2κ(A)≪ 1

AQR-IR3 u f κ(A+)≪ 1 u f κ(A+)≪ 1

AQR-GMRES-IR3 u f u 1/2κ(A)≪ 1§ u 1/2
f u 1/2κ(A)≪ 1§

§ scaling (4.34) is applied

Table 4.3: Summary of the limiting accuracies for the forward and normwise backward
errors. The cond(A, x ) term becomes cond(A+, z ) in the least squares case.

Forward error Backward error

p ur cond(A, x ) +u p ur +u

• 3: u = ur ≤ us . Accelerate the solution of linear systems with low accuracy solution

on the correction equation (4.2).

• 4: ur ≤ u ≤ us . All previous strategies combined. Stability, performance, and high

accuracy can all be achieved at the same time with this setting.



5 LU-GMRES-IR in five
precisions

LU preconditioned GMRES-based iterative refinement in three precisions (LU-
GMRES-IR3), defined by Algorithm 4.3 and discussed broadly in section 4.4, is an
algorithm aiming at accelerating the solution of a square linear system (1.1) with-
out compromising numerical stability or robustness. However, the three preci-
sions formulation of the algorithm has major practical limitations for the solution
of dense and sparse systems.

In this chapter, we discuss a five precisions version of this algorithm that we
call LU preconditioned GMRES-based iterative refinement in five precisions (LU-
GMRES-IR5), which overcomes these limitations. We present these limitations
and motivate the need for relaxing the requirements on the precisions in LU-
GMRES-IR3 in section 5.1. We propose a rounding error analysis for LU-GMRES-
IR5 that uses a new result on the backward stability of MGS-GMRES in two preci-
sions in section 5.2. From this rounding error analysis, we can identify a relatively
small subset of relevant combinations of precisions that achieve different levels
of trade-off between cost and robustness in section 5.3. We discuss the use of a
stopping criterion inside GMRES and how it affects the previous error analysis
in section 5.4. We conduct numerical experiments on both random dense ma-
trices and real-life sparse matrices from a wide range of applications that assess
our theoretical findings in section 5.5. We provide practical advice for choosing
variants of iterative refinement based on LU solver in section 5.6. Finally, we ex-
tend LU-GMRES-IR5, for the solution of square linear systems, to the least squares
problems in section 5.7.

5.1 From LU-GMRES-IR3 to LU-GMRES-IR5
Modern hardware increasingly supports low precision floating-point arithmetics that pro-

vide unprecedented speed, communication, and energy benefits as explained in section 2.1.3.

However, using these low precisions might badly affect the robustness of the iterative re-

finement algorithms by introducing unrecoverable rounding errors.

79



80 5.1. FROM LU-GMRES-IR3 TO LU-GMRES-IR5

In particular, LU-IR3, introduced in section 4.3, is very sensitive to the condition number

of the linear system. Indeed, while it can be very attractive for well-conditioned matrices,

the forward error is only guaranteed to converge when κ(A)u f ≪ 1 (4.24). This condition

can be quite restrictive, especially when low precision arithmetics are used for the factor-

ization. For example, the condition becomes κ(A)≪ 2×103 with IEEE fp16 (half) precision,

and κ(A)≪ 3×102 with bfloat16.

The purpose of LU-GMRES-IR3, introduced in section 4.4, is to recover this robustness

when low precision factorizations are targeted. By applying the GMRES solver entirely in

working precision u except the preconditioned matrix–vector product which is applied in

the higher precision u 2, LU-GMRES-IR3 has a less restrictive convergence condition for the

forward error κ(A)2u 2
f u ≪ 1 (4.27) and can handle larger condition numbers. For example,

if u is set to IEEE fp64 (double) precision, the condition becomes κ(A)≪ 2×1011 with u f

set to IEEE fp16 (half) precision, and κ(A)≪ 2×1010 with bfloat16.

However, the requirement that the preconditioner must be applied in precision u 2 is a

practical limitation because it can be expensive. It is particularly inconvenient if the target

accuracy u is fp64 as it requires applying the preconditioner in fp128, which is a very slow

arithmetic as stated in section 2.1.2. In fact, practical implementations of LU-GMRES-IR3,

as developed by Haidar et al. [102; 104; 103] and implemented in the MAGMA library [156]
and the NVIDIA cuSOLVER library [169], have relaxed this requirement by applying the

preconditioner in double rather than quadruple precision, even though the error analysis

of Carson and Higham [45] (Theorem 4.4) does not cover this case. GMRES-IR variants for

symmetric positive definite systems and least squares problems have also used only two

precisions (see Carson et al. [47], Higham and Pranesh [121]).

This is why in this chapter, we are particularly interested in addressing the question

of whether we can use a lower precision to apply the preconditioner within GMRES and

still obtain a LU preconditioned GMRES-based iterative refinement (LU-GMRES-IR) solver

able to handle more ill-conditioned matrices than LU-based iterative refinement (LU-IR).

These practical constraints and theoretical questions lead us to propose new variants

of LU preconditioned GMRES-based iterative refinement with relaxed requirements on the

precisions used within the GMRES solver. We allow the preconditioner (the LU factors) to

be applied in an arbitrary precision up , with up ≥ u 2. We also allow the rest of the GMRES

computations to be performed in an arbitrary precision ug , with ug ≥ u . We obtain Algo-

rithm 5.1, which has up to five independent precisions in play and which we thus call LU

preconditioned GMRES-based iterative refinement in five precisions (LU-GMRES-IR5).

Note that even though LU-GMRES-IR5 has five precision parameters, it does not mean

that this algorithm uses five different arithmetics simultaneously since some of the preci-

sions can be equal. In fact, we will see that most of the relevant combinations of precisions

use only two or three different precisions. Nevertheless, there exist some meaningful vari-

ants (as defined in section 2.1.3.3) that employ four or even five different precisions in

the same refinement step. We specify “in the same refinement step” because dynamically

changing the precisions from one iteration to another could already lead to such a number

of different precisions across all steps, and even more in the case of arbitrary precision

refinement, which has been studied by Kiełbasiński [135], Lee et al. [140].



5. LU-GMRES-IR IN FIVE PRECISIONS 81

Algorithm 5.1 LU-GMRES-IR5

Input: an n ×n matrix A and a right-hand side b .
Output: an approximate solution to Ax = b .

1: Factorize A = bLÒU . (u f )
2: Solve bLÒU x0 = b for x0. (u f )
3: while not converged do
4: Compute ri = b −Axi . (ur )
5: Solve ÒU −1

bL−1Adi = ÒU −1
bL−1ri by GMRES at precision ug with matrix–vector products

with eA = ÒU −1
bL−1A computed at precision up .

6: Compute xi+1 = xi +di . (u )
7: end while

5.2 Rounding error analysis

To guarantee the backward stability of LU-GMRES-IR5 and to capture the role of each

precision u , u f , ur , ug and up on the convergence and the quality of the computed solution,

we need to carry out a new rounding error analysis. Specifically, we want the equivalent

of Theorem 4.4 on LU-GMRES-IR3 but for our new LU-GMRES-IR5. Therefore, we wish to

show that the forward and the normwise backward errors are guaranteed to decrease until

they reach a certain size, namely, their limiting accuracies, if some convergence conditions

are met. We will informally refer to the attainment of this level as “convergence” while

recognizing that the error does not necessarily converge in the formal sense.

Determining the limiting accuracies of LU-GMRES-IR5 is straightforward. Because re-

gardless of the solver used to solve the correction equation at step 4 of Algorithm 4.1, gener-

alized iterative refinement guarantees that the limiting accuracies will be (4.10) and (4.22),

respectively, for the forward and backward errors. Thus, our main concern is about de-

termining the convergence conditions of LU-GMRES-IR5 that cannot be directly obtained

from the analysis of LU-GMRES-IR3. It is mainly because, under the assumption thatκ(A)u ≤
1, the application of the preconditioner in precision u 2 allows for important simplifications

in Carson and Higham [44; 45] of the form κ(A)u 2 ≤ u that we cannot rely on anymore.

We present in Theorem 5.1 the result of our error analysis. The form of this new theorem

is similar to Theorem 4.4 and, in particular, it expresses the convergence conditions (5.2)

and (5.3) of LU-GMRES-IR5 with the precision u f and the new precisions ug and up . There-

fore, the rest of this section will be about proving Theorem 5.1.

Theorem 5.1 (Convergence of LU-GMRES-IR5). Let (1.1) be solved by LU-GMRES-IR5 (Al-

gorithm 5.1) using MGS-GMRES at step 5 and using GEPP at step 1. If ug ≥ u andκ(A)up < 1,

the forward and backward errors will reach their respective limiting accuracies

p ur cond(A, x ) +u (forward) and p ur +u (backward), (5.1)

provided that

(ug +upκ(A))(1+κ(A)
2u 2

f )≪ 1 (forward) (5.2)



82 5.2. ROUNDING ERROR ANALYSIS

and

(ug +upκ(A))(1+κ(A)u f )κ(A)≪ 1 (backward). (5.3)

To generalize the error analysis of LU-GMRES-IR3 to LU-GMRES-IR5 we will proceed as

follows. First, we extend the analysis of Paige et al. [176] on the backward stability of MGS-

GMRES to arbitrary matrix–vector products satisfying a generic error bound in section 5.2.1.

Second, we use this generalized analysis to bound the forward and backward errors of the

two precisions MGS-GMRES solver used at step 5 for the solution of eAdi = si in section 5.2.2,

where eA = ÒU −1
bL−1A and si = ÒU −1

bL−1ri . We then use these bounds to rewrite (4.9) and

(4.16) and to apply Theorems 4.1 and 4.2 to obtain the specialized conditions on κ(A) for

LU-GMRES-IR5 to converge in section 5.2.3. Finally, in section 5.2.4, we comment on the

results of Theorem 5.1.

Our analysis makes use of the following two assumptions on the precisions:

• ug ≥ u : since the solution computed by GMRES is stored in the working precision u ,

we do not expect that running GMRES in precision ug < u would give a significant

benefit. In particular, this assumption guarantees that condition (4.7) is met.

• κ(A)u < 1: this assumption is already present in the three-precision analysis (see

section 4.4); here, we use it for different discussions, but it is not required to derive

Theorem 5.1.

• κ(A)up < 1: this assumption is needed to drop certain second order terms in our

analysis. It guarantees that κ(A)2u 2
p is negligible relative to κ(A)up .

5.2.1 Error analysis of MGS-GMRES with arbitrary matrix–vector products

We assume that the MGS-GMRES variant of GMRES, represented by Algorithm 2.6, is used in

LU-GMRES-IR5. Our aim in this section is to bound the backward error of the two-precision

MGS-GMRES used for the solution of the preconditioned system eAdi = si . In this algorithm,

the precision ug is used for all the operations except the products with eA, which are com-

puted in precision up . The analysis of Paige et al. [176] is for fixed precision, unprecondi-

tioned MGS-GMRES, and therefore is not directly applicable. Note that, in the analysis of

Carson and Higham [44], the preconditioner is applied in precision u 2 and, by using the

assumption κ(A)u < 1, it is shown that the products with eA in precision u 2 are at least as

accurate as the products with A in precision u , so that the backward stability result of Paige

et al. [176] still holds. In our case, the same argument does not apply, so we must generalize

the backward stability result [176, Eq. (8.15)] to the case of arbitrary matrix–vector products

satisfying a generic error bound. We will then be able to use this analysis to derive results

for the two-precision MGS-GMRES used in LU-GMRES-IR5. We state the conclusion of our

analysis in the next theorem.

Theorem 5.2. Consider the solution of a linear system

P x = q , P ∈Rn×n , 0 ̸= q ∈Rn (5.4)



5. LU-GMRES-IR IN FIVE PRECISIONS 83

with an MGS-GMRES solver carrying out its operations in precision ug , except for the prod-

ucts with P , which satisfy instead

fl(P v ) = P v + f , ∥ f ∥2 ≲ εp∥P ∥F ∥v ∥2, (5.5)

where εp > 0 is a parameter quantifying the stability of the matrix–vector products. Provided

that

σmin(P )≳ (k 1/2εp + eγ
g
k n )∥P ∥F , (5.6)

there is a step k ≤ n such that the algorithm produces a computed bxk satisfying

(P +∆P )bxk = q +∆q , (5.7a)

∥∆P ∥F ≲ (k 1/2εp + eγ
g
k n )∥P ∥F , (5.7b)

∥∆q∥2 ≲ eγ
g
k n∥q∥2. (5.7c)

Proof. The proof of Theorem 5.2 relies on the analysis of Paige et al. [176] and, more pre-

cisely, on [176, sec. 8] and [176, Eq. (4.3)] therein. For the sake of readability, we will not

attempt to make this proof self-contained in this chapter but, rather, we will highlight the

differences with the analysis of Paige et al. [176] and refer the reader to the Appendix 8.2 for

the full details. The original notation has been slightly adapted to be consistent with the

notation of this article inherited from Carson and Higham [44; 45].
In our version of MGS-GMRES we consider a product with P satisfying (5.5). We now

show that considering (5.5) with εp ̸= γ
g
n mainly changes [176, Eq. (4.3)]. Let us consider

ÒVk = [bv1, . . . , bvk ] ∈Rn×k , the matrix of computed basis vectors, and V̇k = [v̇1, . . . , v̇k ] the same

matrix but with its columns correctly normalized; that is, for j ≤ k ,

bv j = v̇ j +∆v (1)j , ∥∆v (1)j ∥2 ≤ eγg
n , (5.8a)

ÒVk = V̇k +∆V (1)k , ∆V (1)k = [∆v (1)1 , . . . ,∆v (1)k ], (5.8b)

where∆v (1)j is the error for the normalization of bv j and∆V (1)k is the accumulated error for

the normalization of the basis at step k . By (5.5) and (5.8), we obtain

fl(P bv j ) = P (v̇ j +∆v (1)j ) + f j (5.9a)

= P v̇ j +∆v (2)j , (5.9b)

where ∆v (2)j = P∆v (1)j + f j satisfies ∥∆v (2)j ∥2 ≲ (εp + eγ
g
n )∥P ∥F since ∥v̇ j ∥2 = 1 and ∥ f j ∥2 ≲

εp∥P ∥F ∥v̇ j +∆v (1)j ∥2. We therefore obtain

fl(P ÒVk ) = P V̇k +∆V (2)k , ∥∆V (2)k ∥F ≲ k 1/2(εp + eγ
g
n )∥P ∥F , (5.10)

where∆V (2)k contains the error for both the product and the normalization at the k th itera-

tion. Equation (5.10) is our new version of [176, Eq. (4.3)]; adapting the remainder of [176,

sect. 8] to take this change into account is straightforward. Consequently, we show that

at the (m̄ − 1)st iteration, MGS-GMRES has computed a backward stable solution of the



84 5.2. ROUNDING ERROR ANALYSIS

system, where m̄ satisfies [176, Eq. (6.1)]. From now on, we set k such that k ≡ m̄ −1≤ n ,

and rewrite [176, Eq. (8.2)] as

rk (byk )≡ qk −Pk byk , qk ≡ q +∆qk (byk ), Pk ≡ P V̇k +∆V (3)k (byk ), (5.11a)

∥∆qk (byk )∥2 ≤ eγ
g
k n∥q∥2, ∆V (3)k (y )≡∆V (2)k +∆Ck (y ), (5.11b)

∥∆V (3)k ∥F ≲ (k 1/2εp + eγ
g
k n )∥P ∥F , (5.11c)

where ∆Ck (y ) and ∆qk (y ) are the errors in the MGS least squares solution [176, sect. 7],
and where byk is the computed least squares solution at the k th iteration

byk = arg min
y

∥q −P V̇k y ∥2, k < m̄ . (5.12)

Using the scaling invariance of MGS to scale the right-hand side qk by some scalarφ′ and

making use of [176, Thm. 2.4] gives a bound on the residual [176, Eq. (8.9)]

∥rk ( ŷk )∥2
2 ≤ (eγ

g
k n )

2(∥qkφ
′∥2

2+ ∥Pk∥2
F )2(φ

′)−2. (5.13)

In addition to bounding ∥Pk∥2
F and ∥qkφ

′∥2
2, we use the nonsingularity condition (5.6)

(which is an upper-bound of the condition number ∥P ∥F ∥P −1∥2 from Demmel [57]) in

the same fashion as [176, Eq. (8.11)] to compute a bound for (φ′)−2, which allows us to

rewrite [176, Eq. (8.12)] as

∥rk ( ŷk )∥2 ≲ eγ
g
k n (∥P ∥F ∥ ŷk∥2+ ∥q∥2). (5.14)

Since εp appears in second order terms and higher, they have been dropped, making (5.14)

equivalent to [176, Eq. (8.12)]. Considering now bxk = fl(ÒVk byk ) = (ÒVk +∆V (4)k )byk and using a

standard matrix–vector product in precision ug satisfying ∥∆V (4)k ∥F ≤ eγ
g
k∥ÒVk∥F and∆Pk ≡

[∆V (3)k (byk )−P (∆V (4)k + ÒVk − V̇k )]byk
bx T

k

∥bxk ∥2
2

, we can rewrite [176, Eq. (8.15)] as

rk (byk ) = q +∆qk (byk )− (P +∆Pk )bxk , (5.15a)

∥rk (byk )∥2 ≲ eγ
g
k n (∥P ∥F ∥bxk∥2+ ∥q∥2), (5.15b)

∥∆qk (byk )∥2 ≤ eγ
g
k n∥q∥2, (5.15c)

∥∆Pk∥F ≲ (k 1/2εp + eγ
g
k n )∥P ∥F . (5.15d)

This leads to (5.7) and completes the proof of the theorem.

In the original analysis, P v is a standard matrix–vector product operation and up = ug ,

so fl(P v ) = (P +∆P )v where ∥∆P ∥F ≤ γ
g
q ∥P ∥F from Theorem 2.1. In this case we can set

f =∆P v and apply Theorem 5.2 with εp = γ
g
q , recovering the result of Paige et al. [176] for

an unpreconditioned MGS-GMRES in uniform precision, which produces a solution bxk of

the system P x = q satisfying

(P +∆P )bxk = q +∆q , ∥∆P ∥F ≲ eγ
g
k n∥P ∥F , ∥∆q∥2 ≲ eγ

g
k n∥q∥2. (5.16)



5. LU-GMRES-IR IN FIVE PRECISIONS 85

5.2.2 Error analysis of LU-GMRES-IR5 with general ug and up precisions

We proceed in three steps. First, we bound the error in bsi = fl(ÒU −1 fl(bL−1
bri )). Second, we

use our analysis of MGS-GMRES of the previous section to prove the backward stability of

the solution to the system eAdi = bsi . Third, we combine the previous two results to derive

bounds of the type (4.4)–(4.5) for the solution of eAdi = si .

We begin by bounding the error introduced in forming the preconditioned right-hand

side si = ÒU −1
bL−1
bri in precision up . The computed bsi is the result of the applications of two

triangular solves whose rounding errors are covered by Theorem 2.3. It satisfies

(bL +∆L )(ÒU +∆U )bsi = bri , |∆L | ≤ γp
n |bL |, |∆U | ≤ γp

n |ÒU |. (5.17)

Also, considering Theorem 2.2, the LU factors computed at precision u f satisfy

bLÒU = A+∆A(1), |∆A(1)| ≤ γ f
n |bL ||ÒU |. (5.18)

Note that, technically, bL and ÒU are not the computed factors of A, but the ones of A cast

in precision u f . As the condition number of the cast matrix can be substantially lower due

to a regularization effect (see [129]), κ∞(A) is sometimes an overestimate in the following

analysis. We have

si − bsi = ÒU
−1
bL−1(∆LÒU + bL∆U +∆L∆U )bsi (5.19a)

= (A+∆A(1))−1(∆LÒU + bL∆U +∆L∆U )bsi (5.19b)

≈ (A−1−A−1∆A(1)A−1)(∆LÒU + bL∆U +∆L∆U )bsi (5.19c)

and dropping second order terms we obtain

∥si − bsi ∥∞ ≲ γ
p
2n∥|A

−1||bL ||ÒU |∥∞∥bsi ∥∞ (5.20a)

≤ n 2ρneγ
p
nκ∞(A)∥bsi ∥∞ ≲ n 2ρneγ

p
nκ∞(A)∥si ∥∞. (5.20b)

where the second inequality comes from Theorem 2.5. Actually, in the previous bound,

certain terms of order κ(A)2up u f are dropped (as second order terms). While our assump-

tions allow κ(A)u f to be arbitrarily large and these terms to not be necessarily negligible,

we observe in practice that κ(A)u f is generally at most of order a constant in these terms.

This appears to be the result of the regularization effect mentioned earlier.

Next, we show that this new version of GMRES (with general up and ug precisions)

provides a backward stable solution to the system eAdi = si , where eA = ÒU −1
bL−1A and

si = ÒU −1
bL−1ri . We rely on Theorem 5.2, which provides backward error bounds for MGS-

GMRES with general matrix–vector products. Our aim is therefore to prove that (5.5) holds

for some εp when the matrix–vector products are computed with matrix eA = ÒU −1
bL−1A and

in precision up . Let z j = eA bv j be computed in precision up by a matrix product followed by

two triangular solves. Then

(A+∆A(2))bv j = Òw j , |∆A(2)| ≤ γp
q |A|, (5.21a)



86 5.2. ROUNDING ERROR ANALYSIS

(bL +∆L )byj = Òw j , |∆L | ≤ γp
n |bL |, (5.21b)

(ÒU +∆U )bz j = byj , |∆U | ≤ γp
n |ÒU |. (5.21c)

The computed vector bz j can therefore be written as

bz j = (ÒU +∆U )−1(bL +∆L )−1(A+∆A(2))bv j (5.22a)

≈ (ÒU −1− ÒU −1∆U ÒU −1)(bL−1− bL−1∆L bL−1)(A+∆A(2))bv j (5.22b)

= eA bv j + f j , (5.22c)

where

f j ≈ (ÒU −1
bL−1∆A(2)− ÒU −1

bL−1∆L bL−1A− ÒU −1∆U ÒU −1
bL−1A)bv j (5.23a)

= ( eAA−1∆A(2)− ÒU −1
bL−1∆LÒU eA− ÒU −1∆U eA)bv j , (5.23b)

and so

∥ f j ∥2 ≲ γp
n (κF (A) +κF (ÒU )κF (bL ) +κF (ÒU ))∥ eA∥F ∥bv j ∥2. (5.24)

Since we can expectκF (bL ) to be of modest size (because bL is a unit triangular matrix with off-

diagonal elements bounded by 1 if, for example, partial pivoting is used in the factorization),

and since κF (ÒU )≲ κF (A)κF (bL ), we obtain

∥ f j ∥2 ≲ eγp
nκF (A)∥ eA∥F ∥bv j ∥2 ≤ neγp

nκ∞(A)∥ eA∥F ∥bv j ∥2. (5.25)

Condition (5.5) is thus satisfied forεp = neγ
p
nκ∞(A), and Theorem 5.2 is therefore applicable.

From (5.7) we obtain

( eA+∆ eA) bdi = bsi +∆bsi , (5.26a)

∥∆ eA∥F ≲ (eγ
g
k n +neγ

p
k 1/2n

κ∞(A))∥ eA∥F , (5.26b)

∥∆bsi ∥2 ≲ eγ
g
k n∥bsi ∥2 ≲ n 1/2
eγ

g
k n∥si ∥∞. (5.26c)

Rewriting (5.26a) as

si − eA bdi =∆ eA bdi − (bsi − si )−∆bsi (5.27)

and using (5.26b), (5.20), and (5.26c) to bound the three terms on the right-hand side, we

obtain

∥si − eA bdi ∥∞ ≤ ∥∆ eA∥∞∥ bdi ∥∞+ ∥bsi − si ∥∞+ ∥∆bsi ∥∞ (5.28a)

≲ n (eγg
k n +neγ

p
k 1/2n

κ∞(A))∥ eA∥∞∥ bdi ∥∞
+n 2ρneγ

p
nκ∞(A)∥si ∥∞+n 1/2

eγ
g
k n∥si ∥∞ (5.28b)

≤ n 3 max(k 1/2,ρn )(ug +upκ∞(A))(∥ eA∥∞∥ bdi ∥∞+ ∥si ∥∞). (5.28c)

In conclusion, the normwise relative backward error of the system eA bdi = si is bounded by

∥si − eA bdi ∥∞
∥ eA∥∞∥ bdi ∥∞+ ∥si ∥∞

≲ f (n , k ,ρn )(ug +upκ∞(A)) (5.29)



5. LU-GMRES-IR IN FIVE PRECISIONS 87

and the relative error of the computed bdi therefore satisfies

∥di − bdi ∥∞
∥di ∥∞

≲ f (n , k ,ρn )(ug +upκ∞(A))κ∞( eA), (5.30)

where f (n , k ,ρn ) = n 3 max(k 1/2,ρn ).

5.2.3 Convergence conditions on κ(A)

We can now use this analysis together with (4.9) and (4.16) of Theorems 4.1 and 4.2 to

determine sufficient conditions for the convergence of the forward and backward errors

for general up and ug parameters.

Beginning with the forward error, (5.30) shows that (4.4) holds with

us ∥Ei ∥∞ ≡ f (n , k ,ρn )(ug +upκ∞(A))κ∞( eA), (5.31)

and so, dropping constants, the convergence condition of Theorem 4.1 becomes

(ug +upκ(A))κ( eA)≪ 1. (5.32)

It remains to express κ( eA) in terms of κ(A). By using the formulation of the inverse of a sum

of matrices by Henderson and Searle [105] and (5.18), we obtain

eA = ÒU −1
bL−1A = (A+∆A(1))−1A ≈ I −A−1∆A(1), (5.33a)

eA−1 = A−1
bLÒU = A−1(A+∆A(1)) = I +A−1∆A(1), (5.33b)

which gives the bounds

∥ eA∥∞ ≲ 1+γ f
n∥|A

−1|bL ||ÒU ||∥∞, (5.34a)

∥ eA−1∥∞ ≤ 1+γ f
n∥|A

−1|bL ||ÒU ||∥∞, (5.34b)

(5.34c)

and finally by dropping second order terms and using Theorem 2.5 leads to

κ∞( eA)≲ (1+γ f
n∥|A

−1||bL ||ÒU |∥∞)2 ≲ (1+ f (n ,ρn )u f κ∞(A))
2, (5.35)

showing that the precondtioned matrix eA is relatively well-conditioned. Combining this

bound on κ( eA)with (5.32), we obtain the condition

(ug +upκ(A))(1+κ(A)
2u 2

f )≪ 1 (5.36)

for the forward error to converge to its limiting value of order q ur cond(A, x ) +u .

Next we determine a condition for the backward error to converge. First we need to

bound the backward error of the original correction equation Adi = ri . By observing that

the computed residual bri satisfies bri −A bdi = bLÒU (si − eA bdi ), since si = ÒU −1
bL−1
bri , and using



88 5.2. ROUNDING ERROR ANALYSIS

the bound (5.29) and Theorem 2.2 we obtain

∥bri −A bdi ∥∞ ≲ f (n , k ,ρn )(ug +upκ∞(A))∥bLÒU ∥∞(∥ eA∥∞∥ bdi ∥∞+ ∥si ∥∞) (5.37a)

≲ f (n , k ,ρn )(ug +upκ∞(A))(∥ eA∥∞∥A∥∞∥ bdi ∥∞+κ∞(A)∥bri ∥∞). (5.37b)

We have thus shown that (4.5) holds with us = ug + upκ∞(A), c1 = f (n , k ,ρn )∥ eA∥∞, and

c2 = f (n , k ,ρn )κ∞(A). Dropping constants and using Theorem 4.2 gives the convergence

condition

(ug +upκ(A))(1+ ∥ eA∥)κ(A)≪ 1. (5.38)

From (5.34) we have

∥ eA∥∞ ≤ 1+γ f
n∥|A

−1|bL ||ÒU ||∥∞≪ 1+u f κ∞(A). (5.39)

We finally obtain the condition

(ug +upκ(A))(1+κ(A)u f )κ(A)≪ 1 (5.40)

for the backward error to converge to its limiting accuracy of order q ur + u . Note that

condition (4.8) is implicitly included in the previous (5.40).

5.2.4 Comments on the results of the analysis

Curiously, condition (5.3) is stricter than the condition for the forward error since (5.2) has

an extra u f term. However, note that since the backward error is expected to be smaller

than the forward error (see (2.7)), (5.2) is also an obvious condition for the backward error

to converge to the limiting value of the forward error, of order q cond(A, x )ur +u , as already

explained in section 4.2.3. In particular, if ur = u 2, condition (5.3) is not useful because

(5.2) also guarantees a backward error of order u with a less restrictive condition on κ(A),
since by assumption κ(A)u < 1.

As a check, we compare our results with Higham [116], which analyzes the case up =
ug = ur = u , that is, LU-GMRES-IR in two precisions, and uses a different argument to

that here. Considering 1 ≪ κ(A)u f , our condition (5.2) for convergence of the forward

error is κ(A)3u u 2
f ≪ 1 and our condition (5.3) for convergence of the backward error is

κ(A)3u u f ≪ 1. These conditions agree with Higham [116, eqs. (3.8), (3.6)].

We also compare with the analysis of Carson and Higham [45] for LU-GMRES-IR3, the

conclusions from which we summarized in Theorem 4.4. For ug = u and up = u 2, our

condition (5.2) for convergence of the forward error is (u +κ(A)u 2)(1+κ(A)2u 2
f )≪ 1, and

requires in particular κ(A)2u u 2
f ≪ 1, since we are assuming κ(A)u < 1. Our condition (5.3)

for convergence of the backward error requires, similarly, κ(A)2u u f ≪ 1. These conditions

agree with (4.27) of Theorem 4.4. However, note that the condition for the backward error is

stricter than what has been originally proposed in Carson and Higham [45], that is, uκ(A)≪
1 (see discussion in the proof of Theorem 4.4).



5. LU-GMRES-IR IN FIVE PRECISIONS 89

5.3 Identifying meaningful combinations of precisions
Table 2.1 shows the most widely available floating-point arithmetics (we will refer to them

by their symbols in the text); most modern supercomputers provide hardware (and soft-

ware) support for at least three of them. Assuming for example that fp8 (E4M3), bfloat16,

fp16, fp32, fp64, and fp128 can be used, LU-GMRES-IR5 has more than fifteen thousand

different combinations of its five precision parameters. Among these, not all are relevant

and, therefore, it is important to identify the subset of meaningful combinations. What

we mean by meaningful has been explained in section 2.1.3.3, in the particular case of

LU-GMRES-IR5, a combination is meaningful if none of the precisions it employs can be

reduced without degrading the convergence conditions (5.2) and (5.3) and the limiting

accuracies (5.1). Consequently, every meaningful combination of LU-GMRES-IR5 attains

a trade-off between performance, robustness (ability to converge for ill-conditioned ma-

trices), and accuracy (ability to converge to small errors). Note that, as it will be evoked in

the next section 5.4, the convergence rate of the inner GMRES solver is somewhat unpre-

dictable and, so, our definition of meaningful cannot take it into account.

The effort of formalizing the identification of the meaningful combinations is becoming

essential; indeed, it is no longer straightforward to determine which of these combinations

are relevant or not with an algorithm like LU-GMRES-IR5 which has five precision param-

eters. LU-IR3 and LU-GMRES-IR3 do not face this issue at such extent, and Carson and

Higham [45] did not have to discuss much the problem.

As an example, the meaningful combinations for LU-IR3 must satisfy u 2 ≤ ur ≤ u ≤ u f .

Indeed, the limiting backward and forward errors (recalled in Table 4.2) show that we should

have ur ≤ u and that setting ur < u 2 is not useful since ur = u 2 is already enough to ensure

a forward error of order u (since by assumption κ(A)u < 1).

Meaningful combinations for LU-GMRES-IR5 also satisfy u 2 ≤ ur ≤ u ≤ u f , so our aim

now is to discuss the choice of the two new precision parameters ug ≥ u and up ≥ u 2. To

compute the bounds on κ(A) given by the conditions (5.2) and (5.3), we solve the equalities

(ug + up x )(1+ u 2
f x 2) = 1 and (ug + up x )(1+ u f x )x = 1, respectively. We now state some

observations that can be deduced from our analysis, in particular from condition (5.2).

• up ≤ ug . This first observation comes from the term ug + upκ(A) that appears in

the convergence conditions. We would like the components of this term to be bal-

anced, so that up ≈ ug /κ(A) ≤ ug . So up < ug may be required, but up > ug is not

meaningful. We also note that there is no advantage to take up < ug /κ(A).

• up < u f . This second observation comes from the fact that if up = u f , condition (5.32)

requires κ(A)u f κ( eA)≪ 1, which is worse than the condition κ(A)u f ≪ 1 for LU-IR3.

• up < u , up = u , and up > u are all meaningful. This is one of the main conclusions of

our analysis. We know from Carson and Higham [45] (in which up = u 2 and ug = u)

that setting up = u 2 provides the least restrictive convergence conditions (4.27), but

the precise role of up in the convergence was not analyzed. With the new condi-

tions (5.2) and (5.3) obtained from our generalized analysis, we can now understand

what the conditions become if up is taken larger than u 2. Crucially, setting up = u



90 5.3. IDENTIFYING MEANINGFUL COMBINATIONS OF PRECISIONS

Table 5.1: Bound on κ(A), rounded to one significant figure, given by conditions (5.2)
and (5.3) for the forward and backward errors to converge with LU-GMRES-IR5, depending
on the precisions u f , ug , and up , and assuming the working precision u is double. We
recall that the forward error convergence condition for LU-IR3 is κ(A)≪ 2× 101 for u f =
R, κ(A)≪ 3× 102 for u f = B, κ(A)≪ 2× 103 for u f = H, and κ(A)≪ 2× 107 for u f = S. The
red, underlined terms denote combinations of precisions that are not meaningful. Each
variant is presented in the form of a triplet (u f , ug , up ), hence H D Q means u f = H, ug = D,
and up = Q. We recall that ur does not play a role in the convergence bounds.

Variants (u f , ug , up ) Forward Backward

u f = R

R R B 4×101 7×100

R B B R H B R S B R D B 4×101 1×101

R R H 5×101 9×100

R R S R R D R R Q 6×101 1×101

R H H R S H R D H 8×101 3×101

R B S R B D R B Q 3×102 7×101

R H S R H D R H Q 7×102 2×102

R S S R D S 2×103 6×102

R S D R S Q 7×104 2×104

R D D 1×106 5×105

R D Q 2×109 4×108

u f = B

B R H 5×102 1×101

B B H B H H B S H B D H 5×102 4×101

B R S B R D B R Q 1×103 2×101

B B S B B D B B Q 4×103 2×102

B H S 8×103 6×102

B H D B H Q 1×104 6×102

B S S B D S 1×104 2×103

B S D B S Q 1×106 7×104

B D D 8×106 1×106

B D Q 2×1010 2×109

u f = H

H R S H R D H R Q 8×103 2×101

H B S H B D H B Q 3×104 2×102

H H S 4×104 1×103

H S S H D S 4×104 3×103

H H D H H Q 9×104 1×103

H S D H S Q 8×106 2×105

H D D 3×107 3×106

H D Q 2×1011 4×109

u f = S

S R D S R Q 7×107 2×101

S B D S B Q 3×108 3×102

S H D S H Q 7×108 2×103

S S D 1×1010 1×107

S D D 1×1010 5×107

S S Q 7×1010 1×107

S D Q 2×1015 4×1011



5. LU-GMRES-IR IN FIVE PRECISIONS 91

and even up > u can potentially yield conditions that remain less restrictive than

the LU-IR3 condition κ(A)u f ≪ 1, and therefore represent meaningful combinations.

Let us illustrate this observation with a practical example. Assume u f is set to fp16

and u = ug are set to fp64. Then the condition for the forward error to converge with

LU-IR3 is κ(A)≪ 2×103. Instead, with LU-GMRES-IR5:

– If up is set to fp128 (as in Carson and Higham [45]), condition (5.2) becomes

κ(A)≪ 2×1011. We recover the same condition as in Carson and Higham [45].

– If up is set to fp64 (and thus up = u), condition (5.2) becomes κ(A)≪ 3× 107,

which is still much better than the LU-IR3 condition. This version of LU-GMRES-

IR5 has been successfully used in practice, for example by Haidar et al. [104; 103].

– If up is set to fp32 (and thus up > u), condition (5.2) becomes κ(A)≪ 4× 104,

which is still over an order of magnitude better than the LU-IR3 condition. Note

that this variant uses up to four different precisions if ur is set to fp128.

These examples illustrate how the up precision can be tuned to achieve different

levels of trade-off between robustness (ability to handle ill-conditioned matrices)

and performance (cost of the application of LU factors within GMRES).

• ug = u and ug > u are both meaningful. This is also an important conclusion of

our analysis. Whereas in Carson and Higham [45], ug is set to u to obtain the least

restrictive convergence condition, our analysis reveals that setting ug > u can also

be meaningful. In fact, as long as ug < 1, condition (5.2) is better than the LU-IR3

condition κ(A)u f ≪ 1, so we have much flexibility in choosing ug . Let us again illus-

trate this with a practical example. Assume u f is set to fp16 and u = up are set to fp64.

With ug = u , as previously stated, the condition (5.2) is κ(A)≪ 3×107. However, if ug

is set to fp32, the condition is κ(A)≪ 8×106, which is only slightly worse and remains

much better than the LU-IR3 condition. The precision ug can be chosen even lower,

for example if ug is set to fp16 (i.e., ug = u f ), the condition becomes κ(A)≪ 9×104

and still remains better than the LU-IR3 one. Note that with ug set to fp32, setting up

to fp128 instead of fp64 does not improve the condition κ(A)≪ 8× 106: this shows

that the meaningful values of up can be influenced by the choice of ug , and vice

versa. In conclusion the ug precision can also be tuned to achieve different levels of

trade-off between robustness and performance (the cost of GMRES and, in particular,

the memory footprint of the Krylov basis).

• ug < u f , ug = u f , and ug > u f are all meaningful. This final observation is that ug

and u f can be independent. We have already illustrated in previous examples where

u f is fp16 that ug < u f and ug = u f are both meaningful. This final observation

states that even ug > u f can be meaningful. To see why, let us take another example

with u f set to fp32 and u = up set to fp64. Then setting ug to fp16 yields the condition

κ(A)≪ 7×108, which is better than any combination with the same u and up but with

u f set to fp16 (the best possible condition being κ(A)≪ 3×107 for ug at least in fp64).

Usually, one would expect an fp16 LU factorization and fp32 GMRES to be faster than



92 5.4. GMRES STOPPING CRITERION

the converse (fp32 factorization and fp16 GMRES), so in practice the combinations

with ug > u f are only relevant for a narrow range of κ(A) (in this example, for κ(A)
such that κ(A)≪ 3×107 is not satisfied but κ(A)≪ 7×108 is).

In Table 5.1, we summarize all the possible combinations of up and ug when u f is set

to fp8 (E4M3), bfloat16, fp16, or fp32 (these three precisions being the ones that determine

the convergence conditions). The underlined, red terms correspond to combinations of

these three precisions that are not meaningful. Interestingly, when the working precision

u is fp64 and the residual precision ur is fp128, Table 5.1 contains twenty six meaningful

variants that use at least four different arithmetics, including seven that use all five (R B S,

R H S, B R H, B R S, H R S, B H S, H B S).

All the observations made in this part reduce the number of meaningful combinations

of the five precision parameters to a subset of 235 combinations, corresponding to 1.6%

of all the possibilities. We summarize the numerical properties (convergence condition

and limiting accuracy, for both the forward and backward errors) of a selected subset of

66 LU-GMRES-IR5 variants in Table 5.2. Importantly, the table includes variants used in

existing implementations, for which our analysis provides new theoretical guarantees. It

also includes new combinations of precisions not proposed previously that achieve new,

finer trade-offs between the convergence conditions and the precisions used.

In order to select the appropriate combination of precisions, we have shown in this

section that the user can choose within the subset of the meaningful combinations those

providing the appropriate convergence condition and forward and backward error bounds

according to the application requirements. Within this selection the user can take into

account hardware and software features to further refine the selection.

5.4 GMRES stopping criterion
In this manuscript and in Carson and Higham [44; 45], we stop MGS-GMRES when the

normwise backward error of the preconditioned system eAdi = bsi becomes smaller than

a prescribed value τg . The use of this stopping criterion helps to reduce the cumulated

number of GMRES iterations over the outer iteration of LU-GMRES-IR5 and preserve the

backward stability. In section 5.4.1, we explain why it is essential to limit the number of iter-

ations, in section 5.4.2 we discuss the ideal choice of τg to reduce it, and finally, we present

the impact of using this stopping criterion on the convergence conditions of Theorem 5.1

in section 5.4.3.

5.4.1 On the cost of refinement iterations
Although, in theory, the refinement iterations of LU-GMRES-IR5 are asymptotically neg-

ligible compared with the factorization (O (n 2) compared with O (n 3) for dense systems),

in practice, it is not necessarily the case, and a high number of cumulated inner iterations

greatly affects the performance. Unfortunately, what we mean by a high number of cu-

mulated inner iterations is generally just about a few dozen. The inability to recover this

asymptotic property originates from the relative inefficiency of the refinement steps using



5. LU-GMRES-IR IN FIVE PRECISIONS 93

BLAS 2 kernels compared with the factorization using BLAS 3 kernels. As a consequence,

LU-GMRES-IR5 (and to some extent LU-IR3) can easily lose any time improvement from

low precision factorization by doing too many iterations. The issue is even more exacer-

bated by the fact that the solve operations need to be applied in high precision up and

that, if the precision u f is chosen low, the preconditioner quality will be degraded and the

number of iterations will increase. The cost of the refinement steps has been evaluated, for

example, by Haidar et al. [104] for the dense case, and will be evaluated for the sparse case

in chapter 6 of this manuscript.

For these reasons, LU-GMRES-IR5 should make a relatively small number of cumulated

inner iterations to be useful; sometimes, a well-chosen τg can drastically improve this

cumulated number. On the positive side of this constraint, we often work with small Krylov

basis, which means that the memory used to store the basis is barely noticeable, and the

orthogonalization cost remains negligible compared with the matrix–vector product with

A or the LU solve operations.

The fact that LU-GMRES-IR5 requires a small number of iterations to be efficient and

competitive is actually a well-known issue of the algorithm. Current efforts are exploring

some way of improvement; for example, Oktay and Carson [172]proposed to use a recycling

strategy that can limit the cumulated number of inner iteration of GMRES.

5.4.2 On the convergence behavior

In LU-GMRES-IR5 we have two nested iterative processes: the outer iterations of iterative

refinement and the inner iterations of GMRES. It is important to understand their behavior

to understand better how the stopping criterion can be chosen to limit the cumulated

iterations.

At each LU-GMRES-IR5 outer iteration, we approximatively decrease the forward and

backward errors of the original linear system (1.1) by factors of (ug +upκ(A))(1+κ(A)2u 2
f )

and (ug +upκ(A))(1+κ(A)u f )κ(A), respectively; they are the convergence rates correspond-

ing to the left-hand sides of the conditions of Theorem 5.1. These convergence rates are

constant across the iterations and, for the convergence to happen, we require them to be

far lower than 1. Consequently, it means that we can efficiently bound the final number of

outer iterations needed to reach a certain accuracy on the solution.

However, while the iterative refinement outer iterations have a predictable behavior

with a constant convergence rate, this is not the case for the inner iterations of GMRES.

Actually, the convergence rate of GMRES is a wide topic still discussed today (see Titley-

Peloquin et al. [205], Freitag et al. [78]) and, unfortunately, exploitable bounds allowing a

rough prediction of the number of iterations for the general case at low cost do not exist; a

classical bound being [205, Eq. (2.1)]

∥rk∥2

∥r0∥2
≤ κ2(X )min

p∈Πk

max
λ∈σ(A)

|p (λ)|, k = 1, 2, ..., (5.41)

where we suppose A diagonalizable such that A = X ΛX −1 with Λ diagonal, where σ(A) =
{λ1, . . . ,λn} is the spectrum of A, where Πk is the set of polynomials of degree at most k



94 5.4. GMRES STOPPING CRITERION

Table 5.2: Bounds on κ(A), rounded to one significant figure, such that LU-GMRES-IR5 with
the precisions in the first five columns is guaranteed to converge to the indicated limiting
accuracies.

Forward error Backward error

u ur u f ug up κ(A) Limit κ(A) Limit

S S R B S 3×102 cond(A, x )× S 7×101 S

S S R H S 7×102 cond(A, x )× S 2×102 S

S S R S S 2×103 cond(A, x )× S 6×102 S

S S B B S 4×103 cond(A, x )× S 2×102 S

S S B H S 8×103 cond(A, x )× S 6×102 S

S S B S S 1×104 cond(A, x )× S 2×103 S

S S H B S 3×104 cond(A, x )× S 2×102 S

S S H H S 4×104 cond(A, x )× S 1×103 S

S S H S S 4×104 cond(A, x )× S 3×103 S

S S R S D 7×104 cond(A, x )× S 2×104 S

S S B S D 1×106 cond(A, x )× S 7×104 S

S S H S D 8×106 cond(A, x )× S 2×105 S

S D R B S 3×102 S 7×101 S

S D R H S 7×102 S 2×102 S

S D R S S 2×103 S 6×102 S

S D B B S 4×103 S 2×102 S

S D B H S 8×103 S 6×102 S

S D B S S 1×104 S 2×103 S

S D H B S 3×104 S 2×102 S

S D H H S 4×104 S 1×103 S

S D H S S 4×104 S 3×103 S

S D R S D 7×104 S 2×104 S

S D B S D 1×106 S 7×104 S

S D H S D 8×106 S 2×105 S

D D R B S 3×102 cond(A, x )× D 7×101 D

D D R H S 7×102 cond(A, x )× D 2×102 D

D D R S S 2×103 cond(A, x )× D 6×102 D

D D B B S 4×103 cond(A, x )× D 2×102 D

D D B H S 8×103 cond(A, x )× D 6×102 D

D D B S S 1×104 cond(A, x )× D 2×103 D

D D H B S 3×104 cond(A, x )× D 2×102 D

D D H H S 4×104 cond(A, x )× D 1×103 D

D D H S S 4×104 cond(A, x )× D 3×103 D

D D R S D 7×104 cond(A, x )× D 2×104 D

D D B S D 1×106 cond(A, x )× D 7×104 D

D D R D D 1×106 cond(A, x )× D 5×105 D



5. LU-GMRES-IR IN FIVE PRECISIONS 95

D D B D D 8×106 cond(A, x )× D 1×106 D

D D H S D 8×106 cond(A, x )× D 2×105 D

D D H D D 3×107 cond(A, x )× D 3×106 D

D D S H D 7×108 cond(A, x )× D 2×103 D

D D R D Q 2×109 cond(A, x )× D 4×108 D

D D S D D 1×1010 cond(A, x )× D 5×107 D

D D B D Q 2×1010 cond(A, x )× D 2×109 D

D D H D Q 2×1011 cond(A, x )× D 4×109 D

D D S D Q 2×1015 cond(A, x )× D 4×1011 D

D Q R B S 3×102 D 7×101 D

D Q R H S 7×102 D 2×102 D

D Q R S S 2×103 D 6×102 D

D Q B B S 4×103 D 2×102 D

D Q B H S 8×103 D 6×102 D

D Q B S S 1×104 D 2×103 D

D Q H B S 3×104 D 2×102 D

D Q H H S 4×104 D 1×103 D

D Q H S S 4×104 D 3×103 D

D Q R S D 7×104 D 2×104 D

D Q B S D 1×106 D 7×104 D

D Q R D D 1×106 D 5×105 D

D Q B D D 8×106 D 1×106 D

D Q H S D 8×106 D 2×105 D

D Q H D D 3×107 D 3×106 D

D Q S H D 7×108 D 2×103 D

D Q R D Q 2×109 D 4×108 D

D Q S D D 1×1010 D 5×107 D

D Q B D Q 2×1010 D 2×109 D

D Q H D Q 2×1011 D 4×109 D

D Q S D Q 2×1015 D 4×1011 D

with p (0) = 1, and where rk is the residual at step k . Note that more descriptive bounds

can be achieved, for example, for normal or symmetric positive definite matrices. While we

can conclude that the convergence of GMRES is in part linked to the matrix spectrum, the

eigenvalues alone certainly do not describe the convergence behavior. Indeed, as shown

by Greenbaum et al. [97], every non-increasing convergence curve is possible for GMRES,

independently of the spectrum. Hence, it is admitted by the community that this is a hard

problem. See Simoncini and Szyld [189, sect. 6] for a good summary of the state of the art

on the topic.

Regarding the stopping criterion, it means that the higher τg , the fewer the inner iter-

ations done in one call of GMRES. However, the higher τg , the more the outer iterations

since the accuracy of the solution of the correction equation will be worsened and will

readily affect the convergence rate of iterative refinement. Therefore, the ideal τg should



96 5.4. GMRES STOPPING CRITERION

be a trade-off: large enough to guarantee fast GMRES convergence but small enough to

guarantee fast iterative refinement convergence. Unfortunately, due to the relative unpre-

dictability of the GMRES convergence, this ideal choice of τg has to be made empirically

for a given problem. Actually, the problem of finding a good τg is comparable with finding

a suitable restart parameter for restarted GMRES.

5.4.3 Rounding error analysis with stopping criterion
Stopping MGS-GMRES when we reach a backward error smaller than τg affects the accu-

racy of the solution of the preconditioned correction equation eAdi = bsi and, therefore, the

convergence conditions (5.2) and (5.3) of Theorem 5.1. We now explain how this choice of

stopping criterion preserves the algorithm’s stability and how we can take it into account

in our previous results.

Assuming MGS-GMRES is stopped at iteration j ≤ n such that

∥ eA bd j − bsi ∥2

∥ eA∥F ∥ bd j ∥2+ ∥bsi ∥2

≤τg , (5.42)

we can state that MGS-GMRES provides a computed solution bdi ≡ bd j corresponding to the

true solution of the perturbed system ( eA +∆ eA) bdi = bsi +∆bsi where the perturbations ∆ eA

and∆bsi satisfy

∥∆ eA∥F ≤τg ∥ eA∥F , ∥∆bsi ∥2 ≤τg ∥bsi ∥2. (5.43)

We can adapt Theorem 5.1 for the convergence of LU-GMRES-IR5 to the case where we

use a stopping criterion τg in MGS-GMRES as follows.

Theorem 5.3 (Convergence of LU-GMRES-IR5 with stopping criterion). Let (1.1) be solved

by LU-GMRES-IR5 (Algorithm 5.1) using MGS-GMRES with a stopping criterion τg at step 5

and using GEPP at step 1. If ug ≥ u and κ(A)up < 1, the forward and backward errors will

reach their respective limiting accuracies

p ur cond(A, x ) +u (forward) and p ur +u (backward), (5.44)

provided that

max(ug , upκ(A),τg )(1+κ(A)
2u 2

f )≪ 1 (forward) (5.45)

and

max(ug , upκ(A),τg )(1+κ(A)u f )κ(A)≪ 1 (backward). (5.46)

Proof. From (5.43), we know that the use of the stopping criterionτg readily affect the accu-

racy of the computed solution bdi , therefore, revisiting the previous analysis of section 5.2.2

with the introduction of the stopping criterion τg will change (5.26), it becomes

( eA+∆ eA) bdi = bsi +∆bsi , (5.47a)

∥∆ eA∥F ≲max(eγg
k n , neγ

p
k 1/2n

κ∞(A),τg )∥ eA∥F , (5.47b)

∥∆bsi ∥2 ≲max(eγg
k n ,τg )∥bsi ∥∞. (5.47c)



5. LU-GMRES-IR IN FIVE PRECISIONS 97

It simply translates the fact that for the computation of bdi with MGS-GMRES, either we

meet the stopping criterion and the perturbations ∆ eA and ∆bsi satisfy (5.43), or that the

stopping criterion is not met, but the perturbations are still guaranteed to satisfy (5.26).

Adapting section 5.2.2 by replacing (5.26) with (5.47) is straightforward and concludes

the proof.

A stopping criterion based on the quality of the backward error of the solution rather

than a fixed number of iterations (as it is often done in restarted GMRES) guarantees the

backward stability of LU-GMRES-IR5. This is because we need a guarantee on the accu-

racy of the computed solution bdi at each iteration of iterative refinement to make use of

Theorems 4.1 and 4.2. However, of course, any kind of stopping criterion can be chosen

in practice, and one can choose to stop GMRES after a fixed number of iterations in LU-

GMRES-IR5.

5.5 Numerical experiments
We now perform numerical experiments to assess the validity of the convergence condi-

tions of LU-GMRES-IR5 derived in section 5.2. Throughout our experiments, we focus on

the forward error convergence (condition (5.2)), we fix u = D and ur = Q, and we ana-

lyze the role of the factorization precision u f and that of the newly introduced precisions

up (preconditioner precision) and ug (GMRES precision). In section 5.5.1, we first use

random dense matrices to validate experimentally the forward convergence condition of

Theorem 5.1 and, then, in section 5.5.2, we evaluate the numerical behaviors of different

meaningful variants of LU-GMRES-IR5 on real-life sparse matrices.

We have written a Julia code that implements LU-GMRES-IR5 and LU-IR3, where half

precision arithmetics (fp16 and blfoat16) are simulated. No libraries are available yet to

simulate fp8 in Julia. We have made this code publicly available1.

5.5.1 Random dense matrices
We first use random dense matrices with prescribed 2-norm condition number κ(A)which

are generated in Julia with the command matrixdepot(’randsvd’, n, kappa, mode)
where mode = 2, that is, matrices with one small singular value. Note that this class of

matrices leads to unusually large growth factors ρn of order n (see Higham et al. [109]).

However, we use only small matrices (n = 50) for which ρn does not exceed 20.

We take κ(A) = 10c , for c = 0: 17 and, for each value of κ(A), we generate 100 random

50×50 matrices of corresponding condition number. Then, we run LU-IR3 and LU-GMRES-

IR5 on each matrix and compute their success rate, that is, the percentage of matrices for

which a forward error ∥x − x̂∥2/∥x∥2 ≤ 4.44×10−16 is achieved, since with u = D and ur = Q

the forward error should reach full double precision with no dependency on cond(A, x )
(see the limiting accuracy (5.1)).

Figure 5.1 reports the success rate of LU-IR3 and nine variants of LU-GMRES-IR5, cor-

responding to all possible combinations of the up and ug parameters over the values

1https://github.com/bvieuble/Itref.jl

https://github.com/bvieuble/Itref.jl


98 5.5. NUMERICAL EXPERIMENTS

100 102 104 106 108 1010 1012 1014 1016

20%

40%

60%

80%

100%

κ(A)

Su
cc

es
s

ra
te

ug = D

LU-IR3
up = S

up = D

up = Q

100 102 104 106 108 1010 1012 1014 1016

20%

40%

60%

80%

100%

κ(A)

Su
cc

es
s

ra
te

ug = S

LU-IR3
up = S

up = D

up = Q

100 102 104 106 108 1010 1012 1014 1016

20%

40%

60%

80%

100%

κ(A)

Su
cc

es
s

ra
te

ug = B

LU-IR3
up = S

up = D

up = Q

Figure 5.1: Proportion of matrices for which LU-IR3 and LU-GMRES-IR5 with varying up

and ug converged to double precision forward error as a function of κ(A). For all variants,
u f = B, u = D, and ur = Q.

up = S , D , Q and ug = B , S , D, with u f = B fixed for all variants. This experiment allows

us to obtain an empirical bound on the value of κ(A) at which each variant stops being

able to converge. For example, the success rate of LU-IR3 is 100% as long as κ(A)≤ 102, but

starts decreasing for larger κ(A), and quickly becomes 0%. This experimentally confirms

the theoretical condition κ(A)≪ 2×103 given by (4.24).

Let us now analyze the LU-GMRES-IR5 variants, starting with the role of the precondi-



5. LU-GMRES-IR IN FIVE PRECISIONS 99

100 102 104 106 108 1010 1012 1014 1016

20%

40%

60%

80%

100%

κ(A)

Su
cc

es
s

ra
te

LU: u f = B

LU: u f = H

B B S

H B S

B H S

H H S

Figure 5.2: Proportion of matrices for which LU-IR3 and LU-GMRES-IR5 variants (includ-
ing five meaningful precisions combinations, with u f , ug , up as specified in the legend)
converged to double precision forward error as a function of κ(A). For all variants u = D

and ur = Q.

tioner precision up with fixed ug =D (top graph of Figure 5.1). We can observe that conver-

gence is achieved with 100% success rate as long as κ(A) is smaller than 107 for up = S and

1015 for up = D or Q. The relative robustness of each method is therefore consistent with

the theoretical bounds of Table 5.1. However, the variants with up = S and up = D both

perform much better than expected. This is not entirely surprising since the analysis can

be pessimistic, especially in the bound (5.35) on κ( eA), which in practice has been observed

to often be of order κ(A)u f rather than the worst-case bound (κ(A)u f )2 (see Carson and

Higham [44], Ogita [170], Rump [181]).

Next we analyze the role of the GMRES precision ug by comparing the top graph of

Figure 5.1 with the middle and bottom ones. When up = S, switching from ug = D (top) to

ug = S (middle) has no impact on the success rate, which equals 100% as long as κ(A)≤ 107;

reducing the precision even further by setting ug = B (bottom) only has a slight impact:

the success rate remains at 100% for κ(A)≤ 105. When up = D or Q, reducing the GMRES

precision has a much more visible impact: a 100% success rate is achieved only when

κ(A)≤ 109 (ug = S, middle) or κ(A)≤ 105 (ug = B, bottom).

These experiments also show that the success rate is independent of up when ug = B,

and almost independent of ug when up = S. This illustrates that the meaningful choices

of up depend on the choice of ug , and vice versa. Overall, the experiments of Figure 5.1

are therefore in good agreement with the theoretical bounds. Importantly, they confirm

that even with relaxed requirements on the precisions up and ug , LU-GMRES-IR5 can still

handle matrices that are much more ill-conditioned than LU-IR3.

Finally, we evaluate in Figure 5.2 two meaningful variants of Table 5.1 that use five

different precisions: B H S (u f = B, ug = H, up = S) and H B S (u f = H, ug = B, up = S). We

compare these two variants with LU-IR3 with u f = B or H, and with the B B S and H H S

LU-GMRES-IR5 variants (u f = B, ug = B, up = S and u f = H, ug = H, up = S), which are

the four-precision variants right below and above in terms of convergence condition. The

figure experimentally confirms that both of these five-precision variants are in between

B B S and H H S and are able to handle more ill-conditioned matrices than LU-IR3, showing



100 5.5. NUMERICAL EXPERIMENTS

101 103 105 107 109 1011 1013 1015 1017 1019

101

105

109

1013

1017

κ(A
) =
κ(A

s)

Original condition number κ(A)

Sc
al

ed
co

n
d

it
io

n
n

u
m

b
er
κ
(A

s
)

Figure 5.3: Condition number of the scaled matrixκ(As ) according to the original condition
number before scaling κ(A).

that they are meaningful not only theoretically but also in practice.

5.5.2 Real-life matrices from SuiteSparse

With the following set of experiments carried out on a large set of matrices from the SuiteS-

parse collection (Davis and Hu [55]) we want to verify two main points. First, we want to

check whether reducing the preconditioner and/or GMRES precisions impacts the num-

ber of iterations required to converge. Second, we want to observe if the conclusions of the

previous experiments made on random dense matrices for the forward error convergence

extend to real-life sparse matrices. To do so, we use a set of 230 matrices; these matrices

are all real, square, and of dimension between 500 and 3000. We compare LU-IR3 with the

meaningful LU-GMRES-IR5 variants over the values u f = B, H, S. In these experiments,

rather than counting the number of iterations, we count the number of calls to LU triangu-

lar solves: this is because in the case of LU-GMRES-IR5, an extra LU solve is required at the

start of each iterative refinement step.

For the experiments that use an LU factorization in fp16 arithmetic, we must pay atten-

tion to the narrow range of this arithmetic (see Table 2.1 and discussion of section 2.1.3.2).

Many matrices in our set have entries outside of this range, and so it is essential to ad-

dress this issue. We use the diagonal scaling method of Higham et al. [122] described in

section 4.7, which first normalizes every row and column by its maximum value (preventing

overflow), and then scales the matrix by a quantity λ close to the maximum representable

value (to minimize underflow).

One difficulty is that the number of iterations is very sensitive to the choice of the

GMRES stopping criterion τ and the scaling factor λ, and that the optimal choice of τ



5. LU-GMRES-IR IN FIVE PRECISIONS 101

Table 5.3: Number of LU solves on a sample of SuiteSparse matrices for LU-IR3 and LU-
GMRES-IR5 variants with u f = B. κ(A) is the original condition number, κ(As ) is the con-
dition number after scaling. The matrices are sorted by increasing κ(As ). A “—” indicates
failure to converge.

Name n κ(A) κ(As ) LU-IR3 B B S B B D B S S B S D B D D B D Q

dw256B 512 3.7E+00 1.8E+00 8 24 24 10 10 10 10
gre_512 512 1.6E+02 1.7E+02 16 28 28 17 17 14 14

mahindas 1258 2.1E+13 9.8E+02 12 34 36 14 12 12 12
dw1024 2048 2.1E+03 1.9E+03 18 36 36 20 20 19 19

fs_541_4 541 1.2E+10 6.9E+03 — 48 48 33 35 28 28
rajat12 1879 6.9E+05 8.1E+03 — 94 69 29 29 24 24

sherman1 1000 1.6E+04 9.3E+03 — 78 78 30 26 26 26
watt_2 1856 1.4E+11 3.0E+04 — 522 497 32 32 26 26

bp_600 822 1.5E+06 6.6E+04 — 56 54 23 25 19 19
bwm2000 2000 2.4E+05 2.0E+05 — — — 237 197 148 148

meg1 2904 1.4E+12 3.4E+05 13 28 26 17 17 14 14
lnsp_511 511 3.3E+15 5.8E+05 — 302 268 39 30 23 23

hangGlider_2 1647 1.4E+09 1.2E+06 — 52 56 32 33 31 31
tub1000 1000 1.3E+06 1.3E+06 — — — 354 254 114 114

1138_bus 1138 8.6E+06 2.4E+06 — — — 238 163 83 83
gre_1107 1107 3.2E+07 2.3E+07 — — — 244 185 75 75

rajat19 1157 1.1E+10 1.4E+08 — — — — — 70 69
spaceStation_7 1134 3.9E+11 1.7E+08 — — — — 220 127 127

bcsstk19 817 1.3E+11 1.2E+09 — — — — — 307 209
reorientation_3 2513 1.5E+21 8.9E+11 — — — — — 144 188

fs_760_3 760 9.8E+19 2.6E+12 — — — — — — —
nnc1374 1374 3.7E+14 5.2E+12 — — — — — 85 92

lung1 1650 5.1E+19 1.1E+13 — — — — — 27 27

and λ is different for each variant and matrix. For the comparison to be as fair as possible,

for each variant and each matrix, we have tested eight different values of τ (10−10, 10−8,

10−6, 10−4, 10−3, 10−2, 10−1, and 5× 10−1) and five different values of λ (104, 103, 102, 101,

and 100), and taken the values that leads to the lowest number of iterations.

We display in Figure 5.3 the effect of the scaling on the condition numbers of the ma-

trices with the optimal λ. We can observe that, in addition of preventing overflows and

reducing underflows, this scaling also affect positively the condition numbers by reducing

it on many matrices by few order of magnitude. Indeed, the scaled condition number κ(As )
is almost always under the original one κ(A) and, in particular, this is this new condition

number κ(As ) that affects the convergence conditions (5.2) and (5.3).

We present in Figure 5.4 performance profiles for u f = B, H, S, which plot the percentage

φ of matrices for which a given variant converges in less than α times the number of LU

solves required by the best variant. We also provide detailed results on a representative

sample of these matrices for the case u f = B in Table 5.3.

These results are in agreement with our theoretical study and with the previous experi-

ments of section 5.5.1, and provide a confirmation of the relative robustness of each variant

on a dataset of real-life applications matrices. For example, with u f = B, LU-IR3 only con-



102 5.5. NUMERICAL EXPERIMENTS

2 4 6 8 10

0.2

0.4

0.6

0.8

1.0

φ

u f = B

B D Q

B D D

B S D

B S S

B B D

B B S

LU: u f = B

2 4 6 8 10

0.2

0.4

0.6

0.8

1.0

φ

u f = H

H D Q

H D D

H S D

H S S

H H D

H H S

LU: u f = H

2 4 6 8 10

0.2

0.4

0.6

0.8

1.0

α

φ

u f = S

S D Q

S D D

S S D

S B D

LU: u f = S

Figure 5.4: Performance profile of LU-IR3 and LU-GMRES-IR5 variants (with u f , ug , up as
specified in the legend) on 230 SuiteSparse matrices. φ (y-axis) indicates the percentage
of matrices for which a given variant requires less than α (x-axis) times the number of LU
solves required by the best variant.



5. LU-GMRES-IR IN FIVE PRECISIONS 103

verges for about 35% f the matrices, whereas with LU-GMRES-IR3 (B D Q variant), we are

able to process about 95% of the matrices (the 5% remaining being highly ill-conditioned

matrices). Crucially, the new LU-GMRES-IR5 variants (with relaxed up and/or ug ) are all

more robust than LU-IR3, converging for a much larger percentage of matrices. In partic-

ular, on this set of matrices, the B D D variant is as robust as B D Q and requires the same

number of LU solves. Therefore, these experiments show that, in practice, we can switch

from up = Q to up = D with no impact on the convergence of LU-GMRES-IR.

The other two performance profiles with u f = H and S show similar trends. Unsurpris-

ingly, as we increase the precision of the factorization, LU-IR3 is able to converge on a wider

range of matrices and so the range of matrices where LU-GMRES-IR is relevant is narrower.

This is especially the case for an fp32 factorization, where LU-IR3 is able to converge on

almost 90% of the matrices. Note that this observation heavily depends on the dataset:

for these matrices, the distribution of the κ(A) is not uniform and is mainly concentrated

between 103 and 106, which explains why LU-IR3 performs well with an fp32 factorization.

A performance comparison of the actual runtime of the variants is outside the scope

of this chapter, but we can nevertheless extrapolate some performance trends based on

Figure 5.4 and on the assumptions that (1) the LU solves dominate the overall runtime of

the iterative phase of the solver; and (2) a bfloat16 LU solve is twice faster than an fp32 one,

which is itself twice faster than an fp64 one. With this performance model and considering

for example u f = B, we can expect LU-IR3 (which uses bfloat16 LU solves) to be the fastest

method as long as it does not require more than twice the number of LU solves of a variant

with up = S, that is, for about 30% of the matrices. Similarly, the B S S variant should outper-

form B D D for over 70% of the matrices, making it the best variant for about 70−30= 40% of

the matrices. Finally, on our set of matrices, the B D D variant never requires more LU solves

than the B D Q one and therefore it should be the best variant for the remaining 30% of the

matrices. A high performance implementation of LU-GMRES-IR5 is necessary to confirm

these predictions, and it will be the object of chapter 6 specialized on sparse linear systems.

In Figure 5.5, we report the values of the converged forward errors of the 230 SuiteSparse

matrices used in Figure 5.4 for variants with u f = H. Similarly as for the random dense ma-

trices in section 5.5.1, we observe that the robustness increases as we increase the precision

ug and up inside the GMRES. For example, switching from LU-IR3 with u f = H to H H S

allows us to obtain a double precision accuracy on the forward error for almost all the ma-

trices in the range κ(As ) ∈ [104, 108]. Overall, our observations on real-life sparse matrices

are in good agreement with what has been observed on random dense matrices and with

the convergence condition (5.2). Therefore, we expect that the conclusions of section 5.5.1

would extend nicely on real-life problems, particularly on the large sparse problems from

real-life and industrial applications that we will consider in chapter 6.

5.6 Practical advice
In this section, we propose simple practical tips to pick an algorithm among LU-IR3 and

LU-GMRES-IR5 with adequate precisions ug and up . Their differences are mainly based

on the degree of robustness on the condition number of the matrix A. Naturally, we expect



104 5.6. PRACTICAL ADVICE

100 104 108 1012 1016

100

10−4

10−8

10−12

10−16

κ(A)

Fo
rw

ar
d

er
ro

r

LU: u f = H

100 104 108 1012 1016

κ(A)

H H S

100 104 108 1012 1016

100

10−4

10−8

10−12

10−16

κ(A)

Fo
rw

ar
d

er
ro

r

H S S

100 104 108 1012 1016

κ(A)

H S D

100 104 108 1012 1016

100

10−4

10−8

10−12

10−16

κ(A)

Fo
rw

ar
d

er
ro

r

H D D

100 104 108 1012 1016

κ(A)

H D Q

Figure 5.5: Converged forward error according to κ(A) for LU-IR3 and LU-GMRES-IR5
variants with fixed u f = H (and with ug , up as specified in the legend) on 230 SuiteSparse
matrices.

generally that the higher the robustness, the lower the time and memory savings; therefore,

the user should make a trade-off between the two according to his/her needs. Indeed, the

cost for computing the solution of the correction equation is higher with LU-GMRES-IR5

than with LU-IR3 because, first, the inner GMRES of LU-GMRES-IR5 applies its LU solves

in a higher precision up ≪ u f and might require several iterations to converge, leading

to a time increase. Second, the factors need to be cast in precision up ≪ u f , then, if the

factors are copied explicitly in precision up it leads to a substantial memory consumption

increase. Similar comments can be made when we increase the precisions ug and up in

LU-GMRES-IR5; the more we increase these precisions, the more an iteration of GMRES



5. LU-GMRES-IR IN FIVE PRECISIONS 105

will cost in time and memory.

Note that if LU-IR3 does far more outer iterations than the cumulated number of GM-

RES iterations in LU-GMRES-IR5, LU-GMRES-IR5 might be faster than LU-IR3. This obser-

vation also applies to the precisions ug and up in LU-GMRES-IR5; when we choose them

low, it can increase the number of inner iterations significantly compared with the variant

using higher ug and up . However, in practice, we observed that if κ(A) is reasonably lower

than the convergence condition of the algorithm, we can generally expect the algorithm

using lower precisions to be faster.

Consequently, in order to clarify how to choose a method between LU-IR3, LU-GMRES-

IR5, and standard LU direct solvers in full precision u f or u , here are some general tips:

• For best performance but low accuracy solution: LU solver in u f .

• For best robustness but worst performance: LU solver in u .

• For trade-off between time and accuracy on well-conditioned problems: LU-IR3.

• For trade-off between time and accuracy on ill-conditioned problems: LU-GMRES-

IR5.

• For memory consumption (in dense, ordered from best to worst): LU solver in u f <
LU solver in u < LU-IR3 < LU-GMRES-IR5.

In dense, iterative refinement algorithms cannot do the factorization in-place as for the

LU direct solvers because they require a copy of the matrix A in precision ur and, thus,

they will consume more memory. Also, as proposed by Oktay and Carson [171], LU-IR3 and

LU-GMRES-IR5 can be smartly combined so that we will preferably use the variant with

the best performance and switch the solver (LU to GMRES) and increase the precisions (ug

and up ) on the go if the robustness on the conditioning is not satisfactory. Therefore, the

choice between LU-IR3 and LU-GMRES-IR5 can be conveniently hidden from the user.

5.7 LU-GMRES-IR5 for least squares problem
Carson et al. [47] extended LU-GMRES-IR3 for the solution of the square linear system (1.1)

to the solution of the least squares problem (2.25) with AQR-GMRES-IR3 represented by

Algorithm 4.6 and described in section 4.5.3. This algorithm essentially replaces the LU

factors with the QR factors used as preconditioners for the augmented system (4.29) whose

solution is equivalent to (2.25). They proved Theorem 4.6 on the convergence of the so-

lution of AQR-GMRES-IR3, which established comparable convergence conditions as in

Theorem 4.4 for LU-GMRES-IR3.

For the sake of completeness, our aim in this section will be to adapt, in the same fash-

ion, the result on LU-GMRES-IR5 to the least squares problem. Therefore, we propose to

study QR preconditioned GMRES-based iterative refinement on the augmented system in

five precisions (AQR-GMRES-IR5) described in Algorithm 5.2, which is AQR-GMRES-IR3

but with relaxed precisions ug and up inside GMRES. As the limitations of LU-GMRES-IR3

mentioned in section 5.1 are inherited to AQR-GMRES-IR3 and are potentially stronger



106 5.7. LU-GMRES-IR5 FOR LEAST SQUARES PROBLEM

since the factors are applied two times per iteration, the relaxation to AQR-GMRES-IR5 is

as important and allows for the same benefits.

Algorithm 5.2 AQR-GMRES-IR5

Input: an m ×n matrix A and a right-hand side b .
Output: an approximate solution to minx ∥b −Ax∥2.

1: Factorize A =
�

ÒQ1
ÒQ2

�

�

bR
0

�

. (u f )

2: Solve bR x0 = ÒQ T
1 b for x0. (u f )

3: while not converged do

4: Compute

�

hi

g i

�

=

�

b − ri −Axi

−AT ri

�

. (ur )

5: Solve M −1A+,α

�

dri

dxi

�

=M −1

�

hi

g i

�

by GMRES at precision ug with matrix–vector prod-

ucts with eA+ =M −1A+,α computed at precision up .

6: Compute

�

ri+1

xi+1

�

=

�

ri

xi

�

+

�

dri

dxi

�

. (u )

7: end while

We present in Theorem 5.4 the result of the error analysis of AQR-GMRES-IR5. The rest

of the section will be devoted to proving this theorem.

Theorem 5.4 (Convergence of AQR-GMRES-IR5). Let (1.1) be solved by AQR-GMRES-IR5

(Algorithm 5.2) using MGS-GMRES at step 5 and using the Householder method at step 1.

If ug ≥ u, κ(A)up < 1, and |α| ≈ ∥A†∥−1
2 , the forward and backward errors will reach their

respective limiting accuracies

p ur cond(A+, z ) +u (forward) and p ur +u (backward), (5.48)

provided that

(ug +upκ(A))(1+κ(A)
2u 2

f )≪ 1 (forward) (5.49)

and

(ug +upκ(A))(1+κ(A)u f )κ(A)≪ 1 (backward). (5.50)

Proof. In the same way as in section 5.2 we should proceed in three steps: bounding

the error on forming the preconditioned right-hand side bsi = fl(M −1[bh T
i bg

T
i ]

T ), using our

analysis of MGS-GMRES to prove the backward stability of the solution to the system
eA+[d T

ri
d T

xi
]T = bsi , and combining the two previous results to derive bounds of the type

(4.4) and (4.5) for the solution of eA+[d T
ri

d T
xi
]T =M −1[bh T

i bg
T
i ]

T . From this, we will be able to

derive the convergence conditions (5.49) and (5.50) that are expressed in terms of κ(A).
Fortunately, much of the work has already been done in the error analysis of section 5.2.

The major difficulty of the adaptation to AQR-GMRES-IR5 is to bound the error on the

preconditioned matrix–vector product z j = eA+ bv j to be able to use Theorem 5.2. Because of

the complex form of the application of eA+, which implies few different matrix operations,

this task becomes relatively cumbersome. That is why, this will be the concern of the most



5. LU-GMRES-IR IN FIVE PRECISIONS 107

part of the proof, and the step we begin with.

We recall the scaled augmented matrix and its preconditioner as well as their respective

inverses,

A+,α ≡
�

αI A

AT 0

�

, A−1
+,α ≡
�

0 A−T

A† −αA†A−T

�

, (5.51a)

M ≡
�

αI ÒQ1 bR
bR T
ÒQ T

1 0

�

, M −1 ≡
� 1
α (I −ÒQ1
ÒQ T

1 ) ÒQ1 bR
−T

bR−1
ÒQ T

1 −αbR−1
bR−T

�

, (5.51b)

where ÒQ1 and bR are the computed QR factors of A in precision u f and applied in precision

up , and A† and A−T are, respectively, the pseudo inverse of A and the transpose of the

pseudo inverse. Let z j =M −1A+,α bv j be computed in precision up , the computed bz j can

therefore be written as

bz j = fl(M −1A+,α bv j ) = (M
−1+∆M )(A+,α+∆A+)bv j =M −1A+,α bv j + f j . (5.52)

where f j carries the error on the product. After dropping second order terms, f j becomes

f j ≈ (M −1∆A++∆M A+,α)bv j = (M
−1A+,αA−1

+,α∆A++∆M M M −1A+,α)bv j , (5.53)

with∆M and∆A+, respectively, the error for the application of the preconditioner and the

error for the multiplication with the augmented matrix. Thus, we have

∥ f j ∥2 ≲ (∥A−1
+,α∆A+∥F + ∥∆M M ∥F )∥ eA+∥F ∥bv j ∥2, (5.54)

which gives a bound on the error of the product of the form (5.5) satisfying the condition

for the use of Theorem 5.2. However, for this bound to be useful we need to express the

errors∆A+ and∆M and evaluate the quantities ∥A+,α∆A+∥F and ∥∆M M ∥F .

Before, we need to introduce few more error terms. The application of A+,α and M −1

is composed of matrix–vector products and triangular solves with A, AT , ÒQ1, ÒQ T
1 , bR and

bR T generating, respectively, the backward errors ∆A, ∆A′, ∆Q , ∆Q ′, ∆R and ∆R ′. From

Theorems 2.1 and 2.3 we can bound these errors as such

|∆A| ≤ γp
n |A|, |∆A′| ≤ γp

m |A
T |, |∆Q | ≤ γp

n |ÒQ1|, (5.55a)

|∆Q ′| ≤ γp
m |ÒQ

T
1 |, |∆R | ≤ γp

n |bR |, |∆R ′| ≤ γp
n |bR

T |. (5.55b)

We begin by expressing ∆A+. If we note bv T
j = [bv

T
j ,1 bv

T
j ,2] where bv j ,1 ∈ Rm and bv j ,2 ∈ Rn ,

the product yj = A+,α bv j produces the following computed quantity

byj = fl(A+,α bv j ) =

�

fl(αbv j ,1+A bv j ,2)
fl(AT
bv j ,1)

�

=

�

αbv j ,1+A bv j ,2

AT
bv j ,1

�

+

�

∆A+,1,1 ∆A+,1,2

∆A+,2,1 0

��

bv j ,1

bv j ,2

�

, (5.56)

where we can identify the error∆A+ = [∆A+,i , j ] for i = 1,2 and j = 1,2 made of the errors

on the applications of A and AT and the errors on the vector addition and scalar product;



108 5.7. LU-GMRES-IR5 FOR LEAST SQUARES PROBLEM

we obtain the following bounds

∥∆A+,1,1∥F ≲ |α|eγ
p
m 1/2 , ∥∆A+,1,2∥F ≲ eγp

n∥A∥F , ∥∆A+,2,1∥F ≤ γp
m∥A∥F . (5.57)

We now express∆M . As it would unnecessarily burden the reading, we will not consider

the errors coming from vector additions and scalar products which do not affect the final

conclusion. If we note by T
j = [by

T
j ,1by

T
j ,2]where byj ,1 ∈Rm and byj ,2 ∈Rn , the product z j =M −1

byj

produces the following computed quantity

bz j = fl(M −1
byj ) =

�

fl
�

1
α (I −ÒQ1
ÒQ T

1 )byj ,1+ÒQ1 bR
−T
byj ,2

�

fl
�

bR−1
ÒQ T

1 byj ,1−αbR−1
bR−T
byj ,2

�

�

(5.58a)

=

� 1
α (I −ÒQ1
ÒQ T

1 )byj ,1+ÒQ1 bR
−T
byj ,2

bR−1
ÒQ T

1 byj ,1−αbR−1
bR−T
byj ,2

�

+

�

∆M1,1 ∆M1,2

∆M2,1 ∆M2,2

��

byj ,1

byj ,2

�

, (5.58b)

where we need to analyse each matrix operation kernels to determine ∆M = [∆Mi , j ] for

i = 1, 2 and j = 1, 2. We have

fl(ÒQ1
ÒQ T

1 byj ,1) = (ÒQ1+∆Q )(ÒQ T
1 +∆Q ′)byj ,1 ≈ ÒQ1

ÒQ T
1 byj ,1+ (∆QÒQ T

1 +ÒQ1∆Q ′)byj ,1, (5.59a)

fl(ÒQ1 bR
−T
byj ,2) = (ÒQ1+∆Q )(bR T +∆R ′)−1

byj ,2 ≈ (ÒQ1+∆Q )(bR−T − bR−T∆R ′ bR−T )byj ,2 (5.59b)

≈ ÒQ1 bR
−T
byj ,2+ (∆Q bR−T −ÒQ1 bR

−T∆R ′ bR−T )byj ,2, (5.59c)

fl(bR−1
ÒQ T

1 byj ,1) = (bR +∆R )−1(ÒQ T
1 +∆Q ′)byj ,1 ≈ (bR−1− bR−1∆R bR−1)(ÒQ T

1 +∆Q ′)byj ,1 (5.59d)

≈ bR−1
ÒQ T

1 byj ,1+ (bR
−1∆Q ′− bR−1∆R bR−1

ÒQ T
1 )byj ,1, (5.59e)

fl(bR−1
bR−T
byj ,2) = (bR +∆R )−1(bR T +∆R ′)−1

byj ,2 (5.59f)

≈ (bR−1− bR−1∆R bR−1)(bR−T − bR−T∆R ′ bR−T )byj ,2 (5.59g)

≈ bR−1
bR−T
byj ,2− (bR−1∆R bR−1

bR−T + bR−1
bR−T∆R ′ bR−T )byj ,2, (5.59h)

where (5.59a) corresponds to the computation of two matrix–vector products, (5.59c) of

one triangular solve and one matrix–vector product, (5.59e) of one matrix–vector product

and one triangular solve, and (5.59h) of two triangular solves, and where we can identify

∆M1,1 ≡
1

α
(∆QÒQ T

1 +ÒQ1∆Q ′), ∆M1,2 ≡∆Q bR−T −ÒQ1 bR
−T∆R ′ bR−T , (5.60)

∆M2,1 ≡ bR−1∆Q ′− bR−1∆R bR−1
ÒQ T

1 , ∆M2,2 ≡α(bR−1∆R bR−1
bR−T + bR−1
bR−T∆R ′ bR−T ).

We now bound ∥A−1
+,α∆A+∥F with the scaling parameter set to α ≈ ∥A†∥−1

2 . We have

from (5.51) and (5.57)

∥A−1
+,α∆A+∥F =













�

A−T∆A+,2,1 0

A†∆A+,1,1−αA†A−T∆A+,2,1 A†∆A+,1,2

�











F

(5.61a)

≤ ∥A−T∆A+,2,1∥F + ∥A†∆A+,1,1−αA†A−T∆A+,2,1∥F (5.61b)

+ ∥A†∆A+,1,2∥F

≲
p

neγp
m∥A

†∥F ∥A∥F . (5.61c)



5. LU-GMRES-IR IN FIVE PRECISIONS 109

Next, we bound ∥∆M M ∥F with (5.51), (5.55) and (5.60), in particular we can use Theo-

rems 2.7 and 2.8 and drop second order terms to state ÒQ T
1
ÒQ1 ≈ I , ∥ÒQ1∥F ≈

p
n and ÒQ bR ≈ A,

also we need to use the following observation

∥|ÒQ1||bR |∥F ≤
p

n∥ÒQ T
1
ÒQ1 bR∥F ≲ n∥A∥F ; (5.62)

we have

∥∆M M ∥F ≈












�

2∆QÒQ T
1 +ÒQ1∆Q ′−ÒQ1 bR

−T∆R ′ÒQ T
1

1
α (∆Q bR +ÒQ1∆Q ′ÒQ1 bR )

α(bR−1∆Q ′+ bR−1
bR−T∆R ′ÒQ T

1 ) bR
−1∆Q ′ÒQ1 bR − bR−1∆R

�











F

(5.63a)

≤ ∥2∆QÒQ T
1 +ÒQ1∆Q ′−ÒQ1 bR

−T∆R ′ÒQ T
1 ∥F + ∥

1

α
(∆Q bR +ÒQ1∆Q ′ÒQ1 bR )∥F (5.63b)

+ ∥α(bR−1∆Q ′+ bR−1
bR−T∆R ′ÒQ T

1 ∥F + ∥bR−1∆Q ′ÒQ1 bR − bR−1∆R∥F

≲ neγp
m∥A

†∥F ∥A∥F . (5.63c)

Finally, we can bound the error on the preconditioned matrix–vector product, from (5.54),

we can say

∥ f j ∥2 ≲ neγp
mκF (A)∥ eA+∥F ∥bv j ∥2 ≤

p
mnneγp

mκ∞(A)∥ eA+∥F ∥bv j ∥2. (5.64)

This bound is nearly equivalent to the bound on the matrix–vector product (5.25) of the

analysis of LU-GMRES-IR5 in section 5.2. Thus, the rest of the proof is almost identical as

what has been done in sections 5.2.2 and 5.2.3 and comes straightforwardly.

Although, two steps might not be direct. First, the bound on the error of the computed

preconditioned right-hand side (5.20) in section 5.2.2 can be adapted as such

si =M −1(M −1+∆M )−1
bsi = bsi −∆M M bsi , (5.65)

where si =M −1[bh T
i bg

T
i ]

T and bsi = fl(M −1[bh T
i bg

T
i ]

T ) = (M −1+∆M )[bh T
i bg

T
i ]

T , giving the equiv-

alent bound

∥si − bsi ∥∞ ≤
p

m +n∥∆M M ∥F ∥bsi ∥∞ ≲
p

(m +n )mnneγp
mκ∞(A)∥bsi ∥∞ (5.66)

that we obtain by using (5.63). Second, to express our convergence conditions on the for-

ward and backward errors in terms ofκ(A) as for (5.36) and (5.40), we need bounds onκ( eA+)
and ∥ eA+∥, they can be retrieved from [47, eq. (3.1) and (3.7)]which gives

∥ eA+∥∞ ≲ 1+2m
p

neγ f
mnκ∞(A) (5.67a)

κ∞( eA+)≲ (1+2m
p

neγ f
mnκ∞(A))

2. (5.67b)



110 5.8. CONCLUSION

5.8 Conclusion
In this chapter, we have addressed the solution of linear systems of equations by means of

LU preconditioned GMRES-based iterative refinement in mixed precision. Our baseline is

the work by Carson and Higham [45], who proposed a method, LU-GMRES-IR3, that em-

ploys up to three precisions and in which a mixed precision preconditioned MGS-GMRES

method is used for solving the correction equation in order to converge on ill-conditioned

problems. In its original form, this method requires twice the working precision when ap-

plying the preconditioned matrix to a vector, which can be expensive, especially when the

working precision is double precision. By relaxing the assumptions on the precision of the

operations within the GMRES solver, we have proposed a method with up to five different

precisions in play, which we call LU-GMRES-IR5. We extended the rounding error analysis

of Carson and Higham to cover LU-GMRES-IR5. As a key component of this analysis, we

extended the work of Paige et al. [176] to prove the backward stability of a mixed precision

MGS-GMRES method. Based on this result, we derived conditions on κ(A) that guarantee

the convergence of LU-GMRES-IR5.

Our results show that LU-GMRES-IR5 can accurately and reliably solve relatively ill-

conditioned problems in potentially lower time and memory than LU-GMRES-IR3 thanks

to the use of lower precision arithmetic in the GMRES iterations. Although the combined

use of multiple precisions results in hundreds or thousands of different variants (depend-

ing on how many precisions are available on the system), we provided a list of rules that

we used to identify a much smaller set of practical interests. It includes variants for which

only an experimental evaluation was available prior to this work. We also discussed the use

of a stopping criterion inside MGS-GMRES that can help to limit the cumulated number

of GMRES iterations, but which readily affect the convergence conditions of LU-GMRES-

IR5. Then, we presented an extensive experimental analysis of the LU-GMRES-IR5 method

on randomly generated matrices and matrices from real-life applications. The experimen-

tal results are in good agreement with our theoretical analysis and show that LU-GMRES-

IR5 is a robust and versatile method for solving linear systems of equations. In addition,

we provided practical advice that aimed at clarifying how to pick among LU-IR3 and LU-

GMRES-IR5 and their different combinations of precisions for a given application. Finally,

we showed that in the same way as LU-GMRES-IR3, LU-GMRES-IR5 can be extended for

the solution of the least squares problem by solving the augmented system through a QR

factorization in a potentially low precision.

Most of this chapter is the object of the preprint “Five-Precision GMRES-based iterative

refinement” (Amestoy et al. [18]).



6
Iterative refinement

for sparse
approximate
factorizations

Most recent work on new mixed precision iterative refinement variants to en-
hance in speed and accuracy the solution of linear systems has focused on dense
systems. In this chapter, we investigate the potential of mixed precision iterative
refinement to enhance methods for sparse systems based on common approxi-
mate sparse factorizations.

In doing so, we first present in section 6.1 the use of numerical approximations
and low precision for reducing the computational cost of LU sparse solvers. In sec-
tion 6.2, we talk about the differences between iterative refinement for sparse and
dense systems. We then develop a new error analysis for LU-IR3 and LU-GMRES-
IR5 under a general model of LU factorization that accounts for the approximation
methods typically used by modern sparse solvers in section 6.3. We finally provide
a detailed performance analysis of both the execution time and memory consump-
tion of different algorithms based on a selected set of iterative refinement variants
and approximate sparse factorizations in section 6.4. Our performance study uses
the multifrontal solver MUMPS, which can exploit block low-rank (BLR) factoriza-
tion and static pivoting. We evaluate the performance of the algorithms on large
sparse problems coming from a variety of real-life and industrial applications,
showing that the proposed approach can lead to considerable reductions in both
time and memory consumption.

6.1 Reducing the computational cost of sparse direct solvers
Direct methods for the solution of sparse linear systems (1.1) are widely used and gener-

ally appreciated for their robustness and accuracy. These desirable properties, however,

111



112 6.1. REDUCING THE COMPUTATIONAL COST OF SPARSE DIRECT SOLVERS

come at the cost of high operational complexity, high memory consumption, and limited

scalability on large scale parallel supercomputers compared with iterative solvers. In order

to mitigate some of these limitations, we can use various approaches to trade off some

accuracy and robustness for lower complexity and memory consumption or better com-

putational efficiency and scalability. These include the use of numerical approximations

(see section 2.2.4), such as low-rank approximations or relaxed numerical pivoting. Fur-

thermore, the recent appearance and increasingly widespread adoption of low precision

arithmetics (see section 2.1.3) offer additional opportunities for reducing the computa-

tional cost of sparse direct solvers. However, these approaches often lead to a poor-quality

solution that can be unsatisfactory for many applications. In that context, using iterative

refinement algorithms applying lightweight refinement steps to recover the lost accuracy

is natural.

In the 80s–90s, the fixed precision form of iterative refinement, that is, using the same

precision for every operation, has been studied extensively with sparse factorization for

correcting instability arising from approximation techniques (see section 3.3). For example,

it has been combined with some less stable pivoting strategies (Li and Demmel [143], Don-

garra et al. [66], Gill et al. [82]) or with drop strategies (Arioli et al. [26], Zlatev [217]). In

the late 2000s, a two-precision LU-based iterative refinement has also been used by But-

tari et al. [42], Baboulin et al. [29], Hogg and Scott [124] to accelerate sparse direct solvers

through single precision factorization for double precision accuracy. Most of the efforts

to improve sparse direct solvers with iterative refinement ended with these last studies.

Several variants of the novel mixed precision iterative refinement algorithms LU-IR3, LU-

GMRES-IR3, and our new LU-GMRES-IR5 presented in chapter 5 have been implemented

on modern hardware, notably supporting half precision such as GPUs, and have been

shown to be highly successful at accelerating the solution of dense linear systems (Haidar

et al. [102; 104; 103], Lopez and Mary [154]). However, they have not been considered for

improving sparse direct solvers.

In this chapter, we aim to fill this gap by investigating the potential of mixed precision

arithmetic to accelerate the solution of large sparse linear systems by combining state-of-

the-art iterative refinement variants with state-of-the-art sparse factorizations considering

the use of numerical approximations. There are two main components in our study. First,

we tackle this subject from a theoretical point of view and extend the error analyses of

LU-IR3 and LU-GMRES-IR5 to the case of approximate factorizations which better fit a

common use of sparse direct solvers. Second, we address the issues related to a high per-

formance parallel implementation of mixed precision iterative refinement for sparse linear

systems and provide an in-depth analysis of experimental results obtained on real-life and

industrial problems. For the parallel implementation of the sparse direct solver, we use the

multifrontal approach described in section 2.2.3.4. While our conclusions on the execution

time of LU-IR3 and LU-GMRES-IR5 should be valid to any sparse solvers, some conclusions

on the memory consumption might be specific to the multifrontal approach. It is because

they might be related to the use of active memory that, for example, supernodal approaches

do not use.

To reduce the computational cost of the sparse direct solvers, we will use in our experi-



6. ITERATIVE REFINEMENT FOR SPARSE APPROXIMATE FACTORIZATIONS 113

ments either single precision factorization, BLR, or static pivoting described in section 2.2.4,

or most importantly, a mix of all of them to achieve significant time and memory reductions

while still preserving high accuracy. Our new theoretical analysis of LU-IR3 and LU-GMRES-

IR5 covers all the variants we will use.

6.2 Specific features of iterative refinement with sparse direct
solvers
The most important difference between iterative refinement for dense and sparse linear

systems lies in its practical cost. As explained in section 2.2.3.2, a key property of sparse di-

rect solvers is that they generate fill-in, that is, the LU factors of A are typically much denser

than A itself. Therefore, as the size of the matrix grows, the storage for A becomes negligi-

ble compared with that for its LU factors. Note that this still holds for data sparse solvers

despite the reduced asymptotic complexity. For example, as explained in section 2.2.4.1,

BLR sparse direct solvers reduce the size of the LU factors to at best O (n log n ) entries, but

with the constants hidden in the big O , the size of the LU factors typically remains several

orders of magnitude larger than that of the original matrix.

In Algorithm 6.1 we display the different complexities in dense and in sparse at each

step of LU-IR3 and LU-GMRES-IR5 to better compare how the structural sparsity and the

fill-in readily affect the practical cost of these iterative refinement variants. Hence, in orange

we show the complexities for the solution of dense linear systems, and in blue we show the

sparse counterparts for 3D problems (see Table 2.2).

Algorithm 6.1 LU-IR and LU-GMRES-IR: complexities Dense VS Sparse

Input: an n ×n matrix A and a right-hand side b .

Output: an approximate solution to Ax = b .

1: Factorize A = bLÒU . O (n 3) O (n 2) (u f )
2: Solve bLÒU x0 = b for x0. O (n 2) O (n 4/3) (u f )
3: while not converged do
4: Compute ri = b −Axi O (n 2) O (n ) (ur )
5: Solve Adi = ri by LU solver or by GMRES preconditioned with the LU factors.

O (n 2) O (n 4/3) (us )
6: Compute xi+1 = xi +di O (n ) O (n ) (u )
7: end while

A crucial consequence of the existence of fill-in is that, with a lower precision factor-

ization (u f > u), LU-IR3 can achieve not only higher speed but also lower memory con-

sumption than a standard sparse direct solver run entirely in precision u . This is because

the LU factors, which account for most of the memory footprint, need be stored only in

precision u f . We emphasize that LU-IR3 does not reduce the memory footprint in the case

of dense linear systems, since in this case the matrix A and the LU factors require the same

number of entries, and A must be stored at least in precision u . In fact, since a copy of A

must be kept in addition to its LU factors, iterative refinement for dense linear systems



114 6.3. ERROR ANALYSIS WITH APPROXIMATE FACTORIZATION

actually consumes more memory than a standard in-place LU factorization in precision u ;

this has already been remarked in section 5.6.

Similar comments apply to the cost of the matrix–vector products Axi in the computa-

tion of the residual (step 4 of Algorithm 6.1). Whereas for a dense matrix this cost is com-

parable with that of the LU triangular solves, when the matrix is sparse it becomes, most

of the time, negligible. In particular, this means that we have more flexibility to choose the

precision ur , especially when the target precision u is double precision: performing the

matrix–vector products in high precision (ur = u 2) does not necessarily have a significant

impact on the performance, even for arithmetics usually not supported in hardware, such

as quadruple precision (fp128). This is illustrated and further discussed in section 6.4.

To summarize, LU-IR3 is attractive for sparse linear systems because it can lead to

memory gains and because the most costly step of the iterative phase, that is, the triangular

solves with the LU factors, is carried out in the low precision u f .

Unfortunately these last points are not guaranteed to be met when using LU-GMRES-

IR5 because the triangular solves have to be applied in precision up < u f . As a consequence

the cost of the iterations is higher and the factors need to be cast in precision up (more

is said in section 6.4.3 about different options for casting the factors). As an extreme case,

using LU-GMRES-IR3 by setting ug = u and up = u 2 as originally proposed by Carson

and Higham [45]would make the iterative phase significantly more costly compared with

the factorization. The issue is even worse since if the working precision is fp64, we should

apply the LU solve in fp128, which is not supported by many popular parallel sparse solvers.

Therefore, our relaxed version LU-GMRES-IR5 proposed in chapter 5, which allows for

setting up > u 2, is even more relevant in the sparse case. This is why, in this chapter, we

focus on variants where up ≥ u .

Finally, another specific feature of sparse direct solvers is related to pivoting. While par-

tial pivoting is the most common approach for dense linear systems, sparse direct solvers

commonly use other approaches that better preserve the sparsity of the LU factors and

limit the communications in parallel contexts as explained in section 2.2.3.7. While partial

pivoting guarantees the practical stability of the solver (see section 2.2.1.2), these methods

do not. However, combined with iterative refinement, a sparse direct solver can achieve

a satisfactory stability under suitable conditions as explained in sections 3.3 and 4.2, and

combining the two is thus a natural match.

6.3 Error analysis of iterative refinement with a general ap-
proximate factorization
Carson and Higham [44; 45] and the content of chapter 5 provide error analyses for LU-IR3

and LU-GMRES-IR5, under the assumption that the LU factors are computed with standard

GEPP. However, as explained above, modern sparse direct solvers often depart from this

assumption, because they typically do not implement partial pivoting, and because they

take advantage of data sparsity resulting in numerical approximations. This affects the

error analyses of LU-IR3 and LU-GMRES-IR5 and the conditions under which they are

guaranteed to converge. For this reason, in this section, we propose a new error analysis



6. ITERATIVE REFINEMENT FOR SPARSE APPROXIMATE FACTORIZATIONS 115

under a general approximate factorization model. Our model can be applied to at least BLR,

static pivoting, and their combined use, and we expect it to cover several other approximate

approaches used in direct solvers. Moreover, although in this chapter we are particularly

motivated by sparse applications, the results of this section carry over to the dense case as

well.

The section is therefore articulated as follows. We first propose our approximate fac-

torization model in section 6.3.1 with which we carry out the error analyses of LU-IR3 and

LU-GMRES-IR5 in sections 6.3.2 and 6.3.3. In section 6.3.4 we summarize and interpret the

results of these two analyses. Finally, in section 6.3.5 we apply our results for BLR, static

pivoting, and BLR combined with static pivoting factorizations.

6.3.1 Approximate factorization model
Essentially, the purpose of this section is to revisit with numerical approximations the re-

sults of Theorem 4.3 and Theorem 5.1 which are providing the respective convergence

conditions and limiting accuracies for the forward and backward errors of LU-IR3 and LU-

GMRES-IR5. As the use of approximations in the LU solver only affect steps 1 and 5 of

Algorithm 6.1, only the convergence conditions shall be re-determined. To do so we need

to express the accuracy of the computed solution bdi by the solver at step 5 to be able to

rewrite (4.9) and (4.16), then, we can apply Theorems 4.1 and 4.2 to obtain the specialized

conditions on κ(A) for LU-IR3 and LU-GMRES-IR5 to converge.

To carry out this new error analysis we propose a general model of an approximate LU

factorization which covers different well-known numerical approximations. Specifically,

our model makes the following two assumptions:

• The approximate factorization performed at precision ux provides computed LU

factors of a square nonsingular matrix A satisfying

A = bLÒU +∆A(1), |∆A(1)|≲ c1ε∥A∥∞e e T + c2ux |bL ||ÒU |, (6.1)

where c1 and c2 are constants related to the dimension of the problem, and where e

is the vector of ones and ε is a parameter quantifying the quality of the approximate

factorization.

• The triangular solve ÒT y = v , where ÒT is one of the approximately computed LU

factors, performed at precision ux provides a computed solution by satisfying

(ÒT +∆ÒT )by = v +∆v, |∆ÒT |≲ c3ux |ÒT |, |∆v |≲ c4ux |v |, (6.2)

where c3 and c4 are constants related to the dimension of the problem.

From (6.1) and (6.2), it follows that the solution of the linear system Ay = v provides a

computed solution by satisfying

(A+∆A(2))by = v +∆v,

|∆A(2)|≲ c1ε∥A∥∞e e T + (c2+2c3)ux |bL ||ÒU |, (6.3)



116 6.3. ERROR ANALYSIS WITH APPROXIMATE FACTORIZATION

|∆v |≲ c4ux (|v |+ |bL ||ÒU ||by |).

Note that, in order for our approximate factorization model to be more general, we have

not enforced a particular sparsity structure on the term c1ε∥A∥∞e e T , which is in fact dense.

The extension of the analysis to backward error with a sparse structure, such as in Arioli

et al. [26], is outside our scope.

6.3.2 Error analysis for LU-IR3
We want to determine the convergence conditions for LU-IR3 (Algorithm 4.2). We can

apply Theorems 4.1 and 4.2 respectively for the convergence of the forward and normwise

backward errors of the computed solution of (1.1), and for both we need respectively a

bound on the forward and backward errors of the computed solution bdi of the correction

equation Adi = bri . Note that for LU-IR3, the factorization (6.1) and the LU solves (6.2) are

performed in precision u f .

Considering the solution of the linear system Adi = bri , (6.3) yields

di − bdi = A−1∆A(2) bdi −A−1∆bri . (6.4)

Taking norms, we obtain

∥di − bdi ∥∞
∥ bdi ∥∞

≲ (c1ε+ c4u f )∥A−1∥∞∥A∥∞+ (c2+2c3+ c4)u f ∥A−1∥∞∥|bL ||ÒU |∥∞. (6.5)

Using Theorem 2.5

∥|bL ||ÒU |∥∞ ≤ (1+2(n 2−n )ρn )(∥A∥∞+ ∥∆A(1)∥∞), (6.6)

where ρn is the growth factor for A+∆A(1). Dropping second order terms finally gives

∥di − bdi ∥∞
∥ bdi ∥∞

≲ f (n )(ε+ρn u f )κ∞(A). (6.7)

In the same fashion we can show that

∥bri −A bdi ∥∞ ≲ f (n )(ε+ρn u f )(∥A∥∞∥ bdi ∥∞+ ∥bri ∥∞). (6.8)

Dropping constants and applying Theorems 4.1 and 4.2 using (6.7) and (6.8) guarantees

that as long as

(ρn u f +ε)κ(A)≪ 1, (6.9)

the forward and the normwise backward errors of the system Ax = b will converge to their

limiting accuracies (4.23).

As a check, if we set ε= 0 (no approximation) and drop ρn (negligible element growth),

we recover (4.24).

Before commenting in section 6.3.4 on the significance of these new LU-IR3 conver-

gence conditions, we first similarly derive the LU-GMRES-IR5 conditions.



6. ITERATIVE REFINEMENT FOR SPARSE APPROXIMATE FACTORIZATIONS 117

6.3.3 Error analysis for LU-GMRES-IR5

We now determine the convergence conditions of LU-GMRES-IR5 (Algorithm 5.1). We pro-

ceed similarly as for LU-IR3, seeking bounds on the forward and backward errors of the

computed solution bdi of the correction equation Adi = bri . One difference lies in the fact

that the GMRES solver is applied to the preconditioned system eAdi = bsi where eA = ÒU −1
bL−1A

and si = ÒU −1
bL−1
bri . This analysis follows closely the analysis of section 5.2 made in the pre-

vious chapter, so we mainly focus on the changes coming from the use of a more general

approximate factorization model and refer the reader to this section for the full details. For

the sake of readability, we do not keep track of the constants ck for k = 1, 2, . . . and we gather

them in f (n )whose precise value is not of interest.

We first need to bound the error introduced in forming the preconditioned right-hand

side si in precision up . Computing si implies two triangular solves (6.2) which differ from

the original GMRES-IR analysis by having an error term on the right-hand side. Adapt-

ing (5.17) and (5.20) with (6.1) and (6.2), supposing κ(A)ρn up < 1 to drop second order

terms, and using (6.6) provides the bound

∥si − bsi ∥∞ ≲ f (n )upρnκ∞(A)∥si ∥∞. (6.10)

As in section 5.2 we compute the error of the computation of the preconditioned matrix–

vector product z j = eA bv j in order to use Theorem 5.2. We obtain z j through a standard

matrix–vector product with A followed by two triangular solves (6.2) with bL and ÒU . The

computed bz j satisfies bz j = z j + f j , where f j carries the error of the computation. With

a very similar reasoning as for deriving (5.25) and considering our new assumptions, we

obtain the bound

∥ f j ∥2 ≲ f (n )upρnκ∞(A)∥ eA∥F ∥bv j ∥2. (6.11)

Apart from the constants and the presence of the growth factorρn which can be arbitrarily

large without assumptions on the pivoting, (6.11) and (6.10) are similar to (5.25) and (5.20)

and meet the assumptions of Theorem 5.2 which can be used to compute a bound of ∥si −
eA bdi ∥∞.

We can finally bound the normwise relative backward error of the system eA bdi = si (5.29)

by
∥si − eA bdi ∥∞

∥ eA∥∞∥ bdi ∥∞+ ∥si ∥∞
≲ f (n )(ug +upρnκ∞(A)) (6.12)

and the relative error of the computed bdi (5.30) by

∥di − bdi ∥∞
∥di ∥∞

≲ f (n )(ug +upρnκ∞(A))κ∞( eA). (6.13)

In addition, the backward error of the original correction equation Adi = bri can be bounded

using bri −A bdi = bLÒU (si − eA bdi ) and (6.12), yielding

∥bri −A bdi ∥∞ ≲ f (n )(ug +upρnκ∞(A))(∥ eA∥∞∥A∥∞∥ bdi ∥∞+κ∞(A)∥bri ∥∞). (6.14)



118 6.3. ERROR ANALYSIS WITH APPROXIMATE FACTORIZATION

It is essential to study the conditioning of the preconditioned matrix eA in order to ex-

press the convergence conditions according to the conditioning of the original matrix κ(A).
Using the same reasoning as for (5.35) we obtain

∥ eA∥∞ ≲ 1+ f (n )(u f ρnκ∞(A) +εκ∞(A)),

κ∞( eA)≲ (1+ f (n )(u f ρnκ∞(A) +εκ∞(A)))
2.

Dropping constants and applying Theorems 4.1 and 4.2 using (6.13) and (6.14) guaran-

tees that as long as

(ug +upρnκ(A))(1+ (u f ρn +ε)
2κ(A)2)≪ 1 (forward error), (6.15)

(ug +upρnκ(A))(1+ (u f ρn +ε)κ(A))κ(A)≪ 1 (backward error), (6.16)

the forward and the normwise backward errors of the system Ax = b will converge to their

limiting accuracies (5.1).

As a check, with ε= 0 and dropping ρn , we recover (5.2) and (5.3).

6.3.4 Summary of the error analysis and interpretation
We summarize the analysis in the following two theorems which extend Theorems 4.3

and 5.1 to the use of approximate factorization.

Theorem 6.1 (Convergence of approximate LU-IR3). Let (1.1) be solved by Algorithm 4.2

(Algorithm 4.2) using an approximate LU factorization satisfying (6.1)–(6.2). If κ(A)(u f ρn +
ε)≥ u,then the forward and backward errors will reach their respective limiting accuracies

(4.23) provided that

(u f ρn +ε)κ(A)≪ 1 (forward and backward). (6.17)

Theorem 6.2 (Convergence of approximate LU-GMRES-IR5). Let (1.1) be solved by Algo-

rithm 5.1 (Algorithm 5.1) using an approximate LU factorization satisfying (6.1)–(6.2) and

using MGS-GMRES at step 5. If ug ≥ u and κ(A)ρn up < 1, the forward and backward errors

will reach their respective limiting accuracies (4.23) provided that

(ug +upρnκ(A))(1+ (u f ρn +ε)
2κ(A)2)≪ 1 (forward) (6.18)

and

(ug +upρnκ(A))(1+ (u f ρn +ε)κ(A))κ(A)≪ 1 (backward). (6.19)

We now comment on the significance of these results. Compared with the original

convergence conditions (4.24), (5.2), and (5.3), the new conditions of Theorems 6.1 and 6.2

include two new terms. The first is the growth factor ρn that, without any assumption on

the pivoting strategy, cannot be assumed to be small. This shows that a large growth factor

can prevent iterative refinement from converging. The second is εwhich reflects the degree

of approximation used by the factorization. The termsρn u f +ε show that we can expect the

approximation to impact the convergence of iterative refinement when ε≳ρn u f (ignoring



6. ITERATIVE REFINEMENT FOR SPARSE APPROXIMATE FACTORIZATIONS 119

the difference between the constants in front of each term). It is important to note that

the instabilities introduced by element growth and numerical approximations combine

additively, rather than multiplicatively (there is no ερn term). In particular, this means

that the usual wisdom that it is not useful to use a very high precision for an approximate

factorization (u f ≪ ε) is no longer true in presence of large element growth. This is a key

property that we confirm experimentally in section 6.4.

6.3.5 Convergence conditions for BLR and static pivoting
We now apply the above analysis to the use of BLR approximations (see section 2.2.4.1) and

static pivoting (see section 2.2.4.2).

The BLR format approximates the blocks of the matrix by replacing them by low-rank

matrices. The ranks are determined by a threshold, τb in this manuscript, that controls the

accuracy of the approximations. Higham and Mary [119] have carried out error analysis of

the BLR LU factorization and obtained a backward error bound of orderτb ∥A∥+u f ∥bL∥∥ÒU ∥,
see Theorem 2.10. One issue is that their analysis derives normwise bounds, whereas our

model (6.1) and (6.2) requires componentwise bounds. However, we have checked that,

at the price of slightly larger constants by about a factor O (n 3/4) and a more complicated

analysis, analogous componentwise bounds can be obtained. Therefore, using the compo-

nentwise version of Theorem 2.10 for (6.1) and of Theorem 2.11 for (6.2), we conclude that

Theorems 6.1 and 6.2 apply with ε=τb .

We now turn to static pivoting, assuming a strategy that replaces pivots smaller in ab-

solute value than τs ∥A∥∞ by τs ∥A∥∞, where τs is a threshold that controls the accuracy

of the factorization. With such a strategy we are actually solving a perturbed system

M x = b , M = A+E , (6.20)

where E is a diagonal matrix having nonzero entries equal to τs ∥A∥∞ in the positions

corresponding to pivots that were replaced. By applying Theorem 2.2 to (6.20) we meet

the condition (6.1) with ε=τs , while condition (6.2) is met since the triangular solves are

standard. Therefore Theorems 6.1 and 6.2 apply with ε=τs .

Finally, we can also derive convergence conditions for the case where BLR and static piv-

oting are combined. This amounts to using BLR approximations on the perturbed system

(6.20), and so Theorems 6.1 and 6.2 apply with ε=τb +τs .

Note that Theorems 6.1 and 6.2 can cover other numerical approximations, such as

dropping (Arioli et al. [26], Zlatev [217]) or ILU (Saad [185]).

6.4 Performance analysis
We have implemented a selected set of iterative refinement variants and we analyze in this

section their practical performance for the solution of large scale, real-life and industrial

sparse problems on parallel computers.

We first describe our implementation details and our experimental setting in sections 6.4.1

and 6.4.2. In particular, we further discuss the issue of casting the factors for LU-GMRES-



120 6.4. PERFORMANCE ANALYSIS

IR5 in section 6.4.3, where we explain that the implementation choices for the cast have

significant impacts on the memory consumption and the execution time. Next, we com-

pare five variants with the case of a plain fp64 factorization plus solve in section 6.4.4, where

we carry out detailed analyses of the time and memory performance. In section 6.4.5, we

investigate the use of four iterative refinement variants combined with BLR, static pivot-

ing, and BLR with static pivoting. Finally, we study the scalability of these algorithms in

section 6.4.7.

6.4.1 Implementation details

To perform our experiments we implemented both LU-IR3 and LU-GMRES-IR5 for their ex-

ecution on parallel architectures. In the following we describe our implementation choices.

For the sparse LU factorization and LU triangular solves, we rely on the MUMPS solver

(Amestoy et al. [17; 12]), which implements the multifrontal method described in section 2.2.3.

It must be noted that most of our analysis readily applies to other sparse factorization ap-

proaches, such as the right- or left-looking supernodal method used, for example, in Su-

perLU (Demmel et al. [59]), PaStiX (Hénon et al. [126]), or PARDISO (Schenk et al. [186]). The

only exception is the memory consumption analysis in section 6.4.4.2, where we rely on

features of the multifrontal method, namely, the use of active memory (see section 2.2.3.4).

The default pivoting strategy used in the MUMPS solver is threshold partial pivoting (Duff

et al. [72]) which provides great stability; alternatively, static pivoting (as described in sec-

tion 2.2.4.2) can be used, where possible, to improve performance. MUMPS also imple-

ments the BLR factorization method described in section 2.2.4.1; for a detailed description

of the BLR feature of MUMPS, we refer to the papers of Amestoy et al. [17; 14].

For the GMRES solver, we have used an in-house implementation of the unrestarted

MGS-GMRES method described in section 2.3.1. This code does not use MPI parallelism,

but is multithreaded; as a result, all computations are performed on a single node, using

multiple cores, except for the solves in the preconditioning which are operated through a

call to the corresponding MUMPS routine which benefits from MPI parallelism. This also

implies that the original system matrix and all the necessary vectors (including the Krylov

basis) are centralized on MPI rank zero. We use the GMRES stopping criterion described

in section 5.4, that is, the GMRES method is stopped when the scaled residual falls below a

prescribed threshold τg .

In the LU-GMRES-IR5 case, the solves require the LU factors to be in a different pre-

cision than what was computed by the factorization, that is, u f ̸= up . Two options are

possible to handle this requirement. The first is to make an explicit copy of the factors by

casting the data into precision up , which is our choice; the second is to make the solve

operations blockwise, as is commonly done to take advantage of BLAS-3 operations, and

cast the blocks on the fly using temporary storage as in the work of Anzt et al. [24]. We

further discuss our choice for the cast of the factors in section 6.4.3.

For the symmetric matrices, we use the LDLT factorization. It must be noted that the

matrix–vector product is not easily parallelizable when a compact storage format is used

for symmetric matrices (such as one that stores only the upper or lower triangular part); for



6. ITERATIVE REFINEMENT FOR SPARSE APPROXIMATE FACTORIZATIONS 121

this reason, we choose to store symmetric matrices with a non-compact format in order to

make the residual computation more efficiently parallelizable.

The code implementing the methods has been written in Fortran 2003, supports real

and complex arithmetics, and supports both multithreading (through OpenMP) and MPI

parallelism (through MUMPS). The results presented below were obtained with MUMPS

version 5.4.0; the default settings were used except we used the advanced multithreading

option of L’Excellent and Sid-Lakhdar [142]. We used the Metis (Karypis [133]) tool version

5.1.0 for computing the fill-reducing permutation. BLAS and LAPACK routines are from

the Intel Math Kernel Library version 18.2 and the Intel C and Fortran compilers version

18.2 were used to compile our code as well as the necessary third party packages. The code

was compiled with the “flush to zero” option to avoid inefficient computations on sub-

normal numbers; this issue is discussed by Zounon et al. [218]. Since commonly available

BLAS libraries do not support quadruple precision arithmetic, we had to implement some

operations (copy, norms) by taking care of multithreading them.

6.4.2 Experimental setting

Throughout our experiments we analyze several variants of iterative refinement that use

different combinations of precisions and different kinds of factorization, with and without

approximations such as BLR or static pivoting.

In all experiments, the working precision is set to double (u = D) and GMRES is used

in fixed precision (ug = up ) for a reason explained below. The factorization precision u f ,

the residual precision ur , and the precisions inside GMRES ug and up may vary according

to the experiments. Alongside the text, we define an iterative refinement variant with the

solver employed (LU or GMRES) and the set of precisions u f , u , and ur (and ug , up if

GMRES is the solver used). If the solver employed is LU we refer to it as an LU-IR3 variant

and if it is GMRES we call it a LU-GMRES-IR5 variant. We use the symbols from Table 2.1:

S, D, and Q to refer to single, double, and quadruple precision arithmetic. We compare the

iterative refinement variants to a standard double precision direct solver, namely, MUMPS,

which we refer to as DMUMPS (Double precision MUMPS).

The values of the BLR threshold τb and the static pivoting threshold τs are specified

alongside the text. For simplicity we set τg , the threshold used to stop GMRES, to 10−6 in

all the experiments, even though it could be tuned on a case by case basis for optimized

performance.

We do not cover all combinations of precisions of LU-IR3 and LU-GMRES-IR5; rather,

we focus our study on a restricted number of combinations of u f , ug , and up , all meaningful

by the rules of section 5.3, and where their convergence conditions and limiting accuracies

(without approximations) can be found in Tables 5.1 and 5.2. This is motivated by several

reasons.

• Hardware support for half precision is still limited and the MUMPS solver on which

we rely for this study does not currently support its use for the factorization; this

prevents us from experimenting with u f = H.



122 6.4. PERFORMANCE ANALYSIS

• Setting up = Q might lead to excessively high execution time and memory consump-

tion. In addition, it has been noticed in the numerical experiments on LU-GMRES-

IR5 in section 5.5 that in practice this brings only a marginal improvement in the

convergence compared with the case up = D on a wide set of real life problems.

• In our experiments we rarely observed the Krylov basis to exceed more than a few

dozen vectors except in section 6.4.5 for very high thresholdsτb andτs . Hence setting

ug > up to reduce the memory footprint associated with the Krylov basis is not a

priority for this study and we focused on the case ug = up .

In sparse direct solvers, the factorization is commonly preceded by a so called analysis

step to prepare the factorization (see section 2.2.3.3). We do not report results on this step

since:

• Its behavior is independent of the variants and precisions chosen.

• It can be performed once and reused for all problems that share the same structure.

• The fill-reducing ordering can be more efficiently computed when the problem ge-

ometry is known (which is the case in numerous applications).

• The efficiency of this step is very much implementation-dependent.

All the experiments were run on the Olympe supercomputer of the CALMIP supercom-

puting center of Toulouse, France. It is composed of 360 bi-processors nodes equipped

with 192GB of RAM and 2 Intel Skylake 6140 processors (2.3Ghz, 18 cores) each. All experi-

ments were done using 18 threads per MPI process because this was found to be the most

efficient combination. Depending on the matrix, we use 2 or 4 MPI processes (that is, 1 or

2 nodes) for the problem to fit in memory; the number of MPI processes for each matrix is

specified in Table 6.1 and is the same for all the experiments, except for the experiments of

sections 6.4.3 and 6.4.7.

Table 6.1 shows the matrices coming from the SuiteSparse Matrix Collection (Davis

and Hu [55]) (not bold) and industrial applications provided by industrial partners (bold)

that were used for our experiments. These matrices are chosen such that a large panel of

applications and a large range of condition numbers are covered. The data reported in

the last three columns of the table are computed by the MUMPS solver with the settings

described above. As MUMPS applies a scaling for numerical stability on the input matrix,

the displayed condition number is therefore the one of the scaled matrix.

In all tests the right-hand side vector was set to b = Ax with a generated x vector

having all its components set to 1, which also served as the reference solution to compute

the forward error. Note that, in a real context, the true solution is not known; without access

to the forward error to stop the algorithm, the stopping criteria reviewed in section 4.6 can

be used.

We give a short description of the matrices provided by our industrial partners:

• ElectroPhys10M: Cardiac electrophysiology model (Niederer et al. [165]).



6. ITERATIVE REFINEMENT FOR SPARSE APPROXIMATE FACTORIZATIONS 123

Table 6.1: Set of matrices from SuiteSparse and industrial applications used in our experi-
ments. n is the dimension; NNZ the number of nonzeros in the matrix; Arith. the arithmetic
of the matrix (R: real, C: complex); Sym. the symmetry of the matrix (1: symmetric, 0: gen-
eral); MPI the number of MPI processes used for the experiments with this matrix; κ(A) the
condition number of the matrix; Fact. flops the number of flops required for the factoriza-
tion; Slv. flops the number of flops required for one LU solve.

ID Name n NNZ Arith. Sym. MPI κ(A) Fact.
(flops)

Slv.
(flops)

1 ElectroPhys10M 1.0E+07 1.4E+08 R 1 4 1E+01 3.9E+14 8.6E+10
2 ss 1.7E+06 3.5E+07 R 0 2 1E+04 4.2E+13 1.2E+10
3 nlpkkt80 1.1E+06 2.9E+07 R 1 2 2E+04 1.8E+13 7.4E+09
4 Serena 1.4E+06 6.4E+07 R 1 2 2E+04 2.9E+13 1.1E+10
5 Geo_1438 1.4E+06 6.3E+07 R 1 2 6E+04 1.8E+13 1.0E+10
6 Chevron4 7.1E+05 6.4E+06 C 0 2 2E+05 2.2E+10 1.6E+08
7 ML_Geer 1.5E+06 1.1E+08 R 0 2 2E+05 4.3E+12 4.1E+09
8 Transport 1.6E+06 2.4E+07 R 0 2 3E+05 1.1E+13 5.2E+09
9 Bump_2911 2.9E+06 1.3E+08 R 1 2 7E+05 2.0E+14 3.9E+10

10 DrivAer6M 6.1E+06 5.0E+07 R 1 2 9E+05 6.5E+13 2.6E+10
11 vas_stokes_1M 1.1E+06 3.5E+07 R 0 2 1E+06 1.5E+13 6.3E+09
12 Hook_1489 1.5E+06 6.1E+07 R 1 2 2E+06 8.3E+12 6.2E+09
13 Queen_4147 4.1E+06 3.3E+08 R 1 2 4E+06 2.7E+14 5.7E+10
14 dielFilterV2real 1.2E+06 4.8E+07 R 1 2 6E+06 1.1E+12 2.3E+09
15 Flan_1565 1.6E+06 1.2E+08 R 1 2 1E+07 3.9E+12 6.2E+09
16 tminlet3M 2.8E+06 1.6E+08 C 0 4 3E+07 1.1E+14 2.1E+10
17 perf009ar 5.4E+06 2.1E+08 R 1 2 4E+08 1.9E+13 1.9E+10
18 Pflow_742 7.4E+05 3.7E+07 R 1 2 3E+09 1.4E+12 2.1E+09
19 Cube_Coup_dt0 2.2E+06 1.3E+08 R 1 2 3E+09 9.9E+13 2.7E+10
20 elasticity-3d 5.2E+06 1.2E+08 R 1 2 4E+09 1.5E+14 5.2E+10
21 fem_hifreq_circuit 4.9E+05 2.0E+07 C 0 2 4E+09 4.3E+11 7.6E+08
22 lfm_aug5M 5.5E+06 3.7E+07 C 1 4 6E+11 2.2E+14 4.7E+10
23 Long_Coup_dt0 1.5E+06 8.7E+07 R 1 2 6E+12 5.2E+13 1.7E+10
24 CarBody25M 2.4E+07 7.1E+08 R 1 2 9E+12 9.6E+12 2.6E+10
25 thmgas 5.5E+06 3.7E+07 R 0 4 8E+13 1.1E+14 3.5E+10

• DrivAer6M: Incompressible CFD, pressure problem, airflow around an automobile

(Theissen et al. [203]).

• tminlet3M: Noise propagation in an airplane turbine (Antwerpen et al. [20]).

• perf009ar: Elastic design of a pump subjected to a constant interior pressure. It was

provided by Électricité de France (EDF), who carries out numerical simulations for

structural mechanics applications using Code_Aster1.

• elasticity-3d: Linear elasticity problem applied on a beam combosed of hereogenous

materials (Al Daas et al. [8]).

• lfm_aug5M: Electromagnetic modelling, stabilized formulation for the low frequency

solution of Maxwell’s equation (Streich et al. [197]).

1http://www.code-aster.org



124 6.4. PERFORMANCE ANALYSIS

• CarBody25M: structural mechanics, car body model.

• thmgas: coupled thermal, hydrological, and mechanical problem.

6.4.3 Cast of the factors
With the LU-GMRES-IR5 algorithm, the LU solves must be applied at a higher precision

up than the precision u f at which the factors are computed. Two options are possible to

handle this requirement: an explicit copy of the factors used to apply the subsequent LU

solves or casting the factors on the fly at each LU solve application. In the following, we

cover both and explain why we choose to keep the explicit copy solution for the experiments

of this chapter.

6.4.3.1 MUMPS data structure. We begin by giving a few general details about the data

structure of the MUMPS software. To every problem is associated a MUMPS data structure

which contains the original information on the problem, the different variables, pointers,

and arrays. With the default MUMPS options, the factors and the active memory are stored

in a single array workspace statically allocated. Some other vectors live outside of this

static workspace, for example, the scaling vectors, the fill permutations, the mapping, or

the structure of the assembly tree. However, they are, for the most part, symbolic and can

be considered negligible.

To implement LU-GMRES-IR5 with, for example, u f = S and up = D, we need two

MUMPS data structures that will share the same workspace; one is in single precision and

serves for the factorization, the other is in double precision and serves for the precondition-

ing. When the single precision instance of MUMPS finishes the factorization, the factors

are cast from single to double precision to apply the forward substitution and the backward

substitution. Other parts of the structure that does not need to be cast, such as the integers,

are shared through pointers.

Note that the active memory part, which is composed of the contribution blocks created

and consumed as we browse the assembly tree (see section 2.2.3.4), is only used during the

factorization and is not useful for the solve operation. Hence, it does not need to be cast.

In addition, note that for some advanced options of MUMPS, the factors (and the active

memory) are not, or not entirely, contained in the single static workspace, but are spread

over smaller dynamically allocated arrays. For example, it is the case when BLR is activated.

6.4.3.2 Explicit copy. The explicit copy approach fully casts the factors once and for all from

precision u f to precision up . Hence, at the end of the cast, the full LU factors in precision

up are accessible. In order to avoid having at the same time in memory the factors in u f and

up , this cast can be done in-place at the cost of a moderate reduction of its parallelization.

To achieve this, an array of the size of the factors in precision up is allocated. This array

is used to compute the factors in precision u f , and then to cast them in-place through a

recursive process from precision u f to precision up . We describe such a recursive cast in

Figure 6.1 for up = u 2
f ; for example, single precision factorization and double precision

preconditioner.



6. ITERATIVE REFINEMENT FOR SPARSE APPROXIMATE FACTORIZATIONS 125

u f up

step 1 :

step 2 :

step 3 :

step 4 :

Figure 6.1: Recursive approach of cast in-place of the factors contained in a contiguous
array from precision u f to precision up where up = u 2

f .

At step 1 of Figure 6.1, the factors have been computed and are in memory in precision

u f ; half of the array remains empty. At step 2, half of the factors are cast in precision u f to

up , which fills the remaining empty space. At step 3, the memory of the previous half of

the factors that have been cast can be reused to cast a quarter of the factors. This recursive

process is repeated until the whole factors have been cast. While these steps cannot be

executed concurrently, parallelism can be exploited within each step.

We now describe how we implemented the cast in-place in the MUMPS solver. When

the single precision factorization finishes, the factors are cast in-place from single to dou-

ble, erasing then the active memory overhead and the single precision factors in the shared

workspace. To properly allocate the shared workspace, we need to consider the two possi-

ble scenarios illustrated in Figure 6.2: 1. the memory peak consumption happens during

the single precision factorization because the active memory overhead consumes more

memory than the single precision factors. 2. the peak consumption happens during the re-

finement steps because the double precision factors require more memory than the single

precision factorization peak (i.e., factors plus active memory overhead in single). In both

cases, the MUMPS estimates of the size of the factors and the active memory overhead

provided after the analysis phase (see section 2.2.3.3) can be used to allocate the shared

workspace. These estimates are accurate if numerical pivoting is not too heavy; however, if

it is not the case, it may produce too much additional fill-in that would increase memory

consumption. This is why safety relaxation memory is allocated to avoid memory shortage.

With some advanced MUMPS options, such as the activation of the BLR, the factors

might not be (fully) contained in the workspace but are stored in smaller arrays that have

been dynamically allocated. As the portion of the factors contained in each of these arrays

is relatively negligible compared with the whole factors in memory, we can simply cast and

deallocate each array one by one to prevent an increase in memory consumption.

6.4.3.3 Cast on the fly. The cast on the fly approach temporarily casts the factors’ entries

when they are used during the solve operation. It means that the factors in precision up

never entirely exist in memory; the only persistent version of the factors is in precision u f .

When used with LU-GMRES-IR5, it guarantees that the memory peak will happen during

the factorization in precision u f if the Krylov subspace is not too large. In particular, it



126 6.4. PERFORMANCE ANALYSIS

1 :

2 :

LU f LUp Active

Figure 6.2: Two possibilities for the peak consumption in the memory workspace of one
MPI process for LU-GMRES-IR5 with up = u 2

f . 1 : peak is reached during the factorization
in precision u f . 2 : peak is reached during the refinement steps. We represent the portion
of the memory occupied by the factors in precision u f and up and by the active memory
overhead. The remaining white part corresponds to unused allocated memory due to safety
relaxation.

means that the algorithm would have approximately the same memory consumption as

LU-IR3. Consequently, cast on the fly can be very attractive from a memory standpoint;

however, it requires at every LU solve a cast of the whole factors.

We implemented an early prototype of cast on the fly inside MUMPS working with only

1 MPI. Contrary to the cast in-place, with the cast on the fly, the MUMPS workspace is not

fully cast from precision u f to precision up . Instead, in our implementation, at each solve

operation, the factors are cast front-by-front during forward and backward substitutions

such that no more than one front is in precision up simultaneously in memory.

6.4.3.4 Comparison. We want to compare the execution time of the two implementations

of the MUMPS LU solve based, respectively, on the explicit copy and the cast on the fly

approaches presented in sections 6.4.3.2 and 6.4.3.3. In the case of the explicit copy, LU-

GMRES-IR5 applies a single cast in-place after the factorization and multiple standard

MUMPS LU solves during the refinement steps. On the other hand, in the case of the cast

on the fly, LU-GMRES-IR5 does not fully copy the factors and applies multiple MUMPS LU

solves with cast on the fly during the refinement steps. Hence, in the first case, the cost of

the copy is paid once, and in the second, it is paid at every iteration of GMRES.

In Table 6.2, we report execution times for modified MUMPS solves using cast on the fly

and standard MUMPS solves applied after one cast in-place of the factors. We can clearly see

that the overhead of casting on the fly during the solve is huge compared with standard solve.

For example, the cast on the fly overhead (i.e., solve with cast on the fly minus standard

solve) on Serena is 6.9s and is even higher than the cast in-place execution time, which is

6.5s. It should be noted, however, that all the matrices in Table 6.2 are symmetric, which is a

disadvantage for the cast on the fly approach. Indeed, for a LDLT factorization, the cast on

the fly will need to cast two times the L factor at each solve, one for the forward substitution

and one for the backward substitution, while the cast in-place casts it only once. We expect

things to be slightly better for cast on the fly with unsymmetric LU factorization, where

both methods have to cast each factor L and U.

From this comparison, we conclude that with our actual implementation of cast on the

fly, the time overhead is too costly and not affordable in the context of our study. This is

why we choose to use the explicit copy approach.



6. ITERATIVE REFINEMENT FOR SPARSE APPROXIMATE FACTORIZATIONS 127

Table 6.2: Comparison of the execution time between cast on the fly solve and standard
solve applicable after the full cast in-place of the factors. The solves are applied in precision
up = D and the factors are computed in precision u f = S. The number of MPI is fixed to 1,
and the number of threads is fixed to 18.

Matrices Solve
(Cast on the fly)

Solve
(Standard)

Cast
(In-place)

Serena 14.88 7.98 6.5
Geo_1438 4.47 2.55 1.7

Bump_2911 4.14 2.39 1.9
Hook_1498 3.41 2.15 1.15

Queen_4147 20.8 12.37 11.2
Flan_1565 3.43 1.85 1.4

PFlow_742 1.43 0.92 0.47
Cube_Coup_dt0 9.91 5.24 4.32
Long_Coup_dt0 6.21 3.4 2.84

However, note that our cast on the fly implementation is quite naive, mainly because a

whole front is cast at once, which probably does not fit in cache, so we cannot benefit from

data locality. A blockwise approach for casting the fronts would probably be better because

it allows us to design block sizes that can be entirely stored in cache. However, the existing

implementation of the MUMPS sparse solve operation is not blockwise and would require

heavy developments inside the software structure. Consequently, this is a solution that we

keep for future work. In certain contexts and with the proper implementation, cast on the

fly can actually be made very efficient; it has been explored widely by Anzt et al. [24], Flegar

et al. [73].

6.4.4 Performance of LU-IR and LU-GMRES-IR using standard LU factoriza-
tion

In this first set of experiments we analyze the time and memory savings that different

iterative refinement variants without approximate factorization are able to achieve and we

show how the specific features discussed in section 6.2, the choice of a multifrontal solver,

and the matrix properties can affect the performance of the method.

In Table 6.3 we present the execution time and memory consumption of five iterative

refinement variants and DMUMPS for the set of the test matrices of Table 6.1. We classify

the variants into two categories; in the first, we have variants that achieve a forward error

equivalent to that obtained with the double precision direct solver DMUMPS (the ones

using ur = D) and, in the second, those whose forward error is of order 10−16, the double

precision unit roundoff (the ones using ur = Q). Actually, for the first category, LU-IR3 and

LU-GMRES-IR5 can provide a better accuracy on the solution than DMUMPS, which is why

we stop their iterations when they reach a forward error of the same order as the solution

obtained with DMUMPS. We denote by a “—” the failure of a method to converge. For

each matrix, we highlight in bold the execution time and memory consumption that do

not exceed by more than 10% the best execution time or memory consumption.



128 6.4. PERFORMANCE ANALYSIS

Table 6.3: Execution time (in seconds) and memory consumption (in GBytes) of IR variants
and DMUMPS for the set of matrices listed in Table 6.1. The solver and the precisions u f ,
ur , ug , and up are specified in the table for each IR variant, u is fixed to u = D.

Solver LU GMRES LU LU GMRES LU GMRES LU LU GMRES

u f S S D S S S S D S S

ur D D Q Q Q D D Q Q Q

up=ug

D
M

U
M

P
S

— D — — D

D
M

U
M

P
S

— D — — D

ID Time eq. DMUMPS (s) Time eq. 10−16 (s) Mem eq. DMUMPS (GB) Mem eq. 10−16 (GB)

1 265.2 154.0 166.5 269.4 155.9 168.2 272.0 138.0 171.3 272.0 138.0 173.5
2 52.7 31.7 33.4 53.7 33.3 36.3 64.8 33.1 46.1 64.8 33.1 46.7
3 31.0 23.1 25.9 31.5 24.8 28.0 28.2 14.2 14.9 28.2 14.2 15.4
4 44.3 31.2 32.8 45.2 32.7 35.4 40.9 20.7 21.9 40.9 20.7 23.0
5 28.2 22.3 27.0 29.0 23.7 27.5 33.4 16.9 19.9 33.4 16.9 21.0
6 2.1 1.7 3.4 2.4 2.1 3.5 1.8 1.0 1.3 1.8 1.0 1.5
7 13.1 9.6 11.0 13.7 11.1 11.7 21.9 11.3 16.4 21.9 11.3 18.2
8 17.2 10.9 12.6 17.6 12.1 12.7 28.1 14.3 21.0 28.1 14.3 21.4
9 205.4 129.3 144.5 208.5 136.3 155.8 135.7 68.4 77.8 135.7 68.4 79.9

10 91.8 67.6 77.9 94.6 75.0 79.2 81.6 41.7 52.9 81.6 41.7 53.7
11 25.3 15.2 16.0 26.0 16.5 17.7 34.1 17.3 25.2 34.1 17.3 25.8
12 15.2 10.7 12.7 15.9 12.2 14.9 19.8 10.2 12.5 19.8 10.2 13.5
13 284.2 165.2 184.7 288.6 177.9 201.4 178.0 89.8 114.5 178.0 89.8 119.7
14 4.2 4.4 5.7 4.7 8.4 7.9 7.1 3.7 4.6 7.1 3.7 5.4
15 10.4 8.4 10.1 11.2 13.6 12.7 18.1 9.3 12.4 18.1 9.3 14.3
16 294.5 136.2 157.9 299.3 180.3 180.2 241.0 121.0 169.9 241.0 121.0 175.1
17 46.1 57.5 52.0 50.6 235.1 73.1 55.6 28.9 38.1 55.6 28.9 41.4
18 5.6 74.8 16.6 6.3 164.3 24.3 6.6 3.5 4.4 6.6 3.5 4.9
19 114.5 68.7 73.8 116.4 74.0 79.2 89.9 45.3 54.0 89.9 45.3 56.1
20 156.7 — 118.6 160.3 — 179.4 153.0 — 103.6 153.0 — 105.5
21 7.5 — 22.9 8.0 — 33.5 8.4 — 6.7 8.4 — 7.3
22 536.2 254.5 269.3 546.9 271.7 307.2 312.0 157.0 187.5 312.0 157.0 188.7
23 67.2 46.6 49.0 70.0 55.1 59.5 52.9 26.7 33.1 52.9 26.7 34.5
24 62.9 — 109.8 71.6 — 170.4 77.6 — 54.3 77.6 — 65.6
25 97.6 65.4 79.8 103.1 90.2 92.2 192.0 97.7 141.7 192.0 97.7 142.3

Some general conclusions can be drawn from the results in this table. The LU-IR3

variants with single precision factorization generally achieve the lowest execution times,

except for a few cases where iterative refinement underperforms for reasons we will discuss

in section 6.4.4.1 or where convergence is not achieved. They also always achieve the lowest

memory consumption when they converge, which comes at no surprise because most of

the memory is consumed in the factorization step.

Since the LU-GMRES-IR5 variants with single precision factorization typically require

more LU solves to achieve convergence than the LU-IR3 variants with single precision

factorization, they usually have a higher execution time. Their memory consumption is

also higher because in our implementation the factors are cast to double precision. These

variants, however, generally provide a more robust and reliable solution with respect to the

LU-IR3 (u f = S) ones. As a result, LU-GMRES-IR5 variants can solve problems where LU-

IR3 do not achieve convergence. In such cases, for our matrix set, their execution time can

be higher than that of variants that employ double precision factorization (DMUMPS or

LU-IR3 with u f = D and ur = Q); however their memory footprint usually remains smaller.



6. ITERATIVE REFINEMENT FOR SPARSE APPROXIMATE FACTORIZATIONS 129

102 104 106 108 1010 1012
10-17

10-9

10-1

fwd cond
LU-IR3

fwd cond
LU-GMRES-IR5

1

2
3

4

5 6

7

8

9

10

11

12

13

14

15
16

17

18

19

20

21

22
23

24

25

κ(A)

fwd

DMUMPS
LU, u f = ur=D

LU, u f =S, ur=Q

GMRES, u f =S, ur=Q

Figure 6.3: Forward error achieved by three IR variants for the matrices used in Table 6.3
(denoted by their ID) as a function of their condition number κ(A). We fix u = ug = up = D.
The vertical dashed lines show the forward convergence condition for LU-IR3 (u f = S, u =
D) and for LU-GMRES-IR5 (u f = S, u = ug = up = D).

Overall, Table 6.3 shows that the LU-GMRES-IR5 variants provide a good compromise

between performance and robustness: unlike LU-IR3 (u f = S), they converge for all matri-

ces in our set, while still achieving a significantly better performance than double precision

based factorization variants.

It is also worth noting that, with respect to variants with ur = D, variants with ur = Q can

achieve a forward error of order 10−16 with only a small additional overhead in both time

(because the residual is computed in quadruple rather than double precision and a few

more iterations are required) and memory consumption (because the matrix is stored in

quadruple precision). As a result, these variants can produce a more accurate solution than

a standard double precision direct solver (DMUMPS) with a smaller memory consumption

and, in most cases, faster. We illustrate the accuracy improvement in Figure 6.3, which

reports the forward error achieved by variants DMUMPS, LU-IR3 with u f = u = ur = D

(stopped when the forward error stagnates), and LU-IR3 and LU-GMRES-IR5 with u f = S

and ur = Q.

In order to provide more insight into the behavior of each variant, we next carry out a

detailed analysis of time and memory consumption in sections 6.4.4.1 and 6.4.4.2, respec-

tively.

6.4.4.1 Detailed execution time analysis. The potential gain in execution time of mixed pre-

cision iterative refinement comes from the fact that the most time consuming operation,

the LU factorization, is carried in low precision arithmetic and high precision is only used in

refinement steps which involve low complexity operations as explained in section 4.2.4. For

this gain to be effective, the cost of the refinement iterations must not exceed the time re-



130 6.4. PERFORMANCE ANALYSIS

ss Serena Queen_4147 Cube_Coup_dt0 elasticity-3d
0

0.25

0.5

0.75

1

EDCBAEDCBAEDCBAEDCBAEDCBA

7
7

13 7

32

5
5

8 6

>i
tm

ax

4
4

9 4
11

4
4

6 3

>i
tm

ax

2 2 2 2 2

N
o

rm
al

iz
ed

ti
m

e
b

y
D

M
U

M
P

S Facto Solves Other

Chevron4 perf009ar CarBody25M
0

0.5

1

2

EDCBAEDCBAEDCBA

9 25

36

5

>i
tm

ax

9

16

24

4

28

>i
tm

ax

2 2 2

N
o

rm
al

iz
ed

ti
m

e
b

y
D

M
U

M
P

S

A: LU, u f =S, ur=D B: GMRES, u f =S, ur=D

C: LU, u f =D, ur=Q D: LU, u f =S, ur=Q

E: GMRES, u f =S, ur=Q

aa
aa

aa
aa 49

Figure 6.4: Execution time for different LU-IR3 and LU-GMRES-IR5 variants normalized by
that of DMUMPS, for a subset of our test matrices (denoted by their ID on the x-axis). Each
bar shows the time breakdown into LU factorization, LU solves, and other computations.
We print on top of each bar the total number of calls to LU solves. We fix u = ug = up = D.
Variants with ur = D provide a forward error equivalent to the one obtained with DMUMPS
(A and B), while variants with ur = Q provide a forward error of order 10−16 (C, D, and E).

duction resulting from running the factorization in low precision. This is very often the case.

First of all, on current processors (such as the model used for our experiments) computa-

tions in single precision can be up to twice as fast as those in double precision. Additionally,

operations performed in the refinement steps have a lower asymptotic complexity com-

pared with the factorization. Nonetheless, in practice, the overall time reduction can vary

significantly depending on a number of parameters. First of all, the ratio between the com-

plexity of the factorization and that of the solution phase is less favorable on 2D problems

than on 3D problems (see Table 2.2). Second, the single precision factorization may be

less than twice as fast as the double precision one; this may happen, for example, on small

problems where the overhead of symbolic operations in the factorization (data indexing,

handling of data structures, etc.) is relatively high or, in a parallel setting, because the single



6. ITERATIVE REFINEMENT FOR SPARSE APPROXIMATE FACTORIZATIONS 131

precision factorization is less scalable than the double precision one due to the relatively

lower weight of floating-point operations with respect to that of symbolic ones. It must

also be noted that although the factorization essentially relies on efficient BLAS-3 opera-

tions, the operations done in the iterative refinement, in particular the LU solves, rely on

memory-bound BLAS-2 operations and are thus less efficient. Finally, in the case of badly

conditioned problems, iterative refinement may require numerous iterations to achieve

convergence.

Figure 6.4 shows the execution time of variants encountered in Table 6.3 normalized

with respect to that of DMUMPS for a selected subset of matrices from our test set; each

bar also shows the time breakdown into LU factorization, LU solves and all the rest which

includes computing the residual and, for the GMRES-based variants, casting the factors,

computing the Krylov basis, orthonormalizing it, etc. The values on top of each bar are the

number of LU solve operations; note that for GMRES-based variants, multiple LU solve

operations are done in each refinement iteration.

In the first row of this figure we report problems that behave well, in the sense that all

the parameters mentioned above align in the direction that leads to a good overall time

reduction. For these problems the single precision factorization is roughly twice as fast

as the double precision one, the complexity of the solve is much lower than that of the

factorization (three orders of magnitude in all cases, as reported in Table 6.1), and relatively

few iterations are needed to achieve convergence. For all these problems, the complexity of

the matrix–vector product is more than two orders of magnitude lower than that of the solve

(see columns “NNZ” and “Slv.” of Table 6.1). As a result, the computation of the residual

only accounts for a small portion of the total execution time—even for variants with ur = Q,

for which it is carried out in slow quadruple precision arithmetic (which is not supported

by our hardware). This is a very desirable property since these variants greatly improve the

forward error with only a modest overhead. The figure clearly shows, however, that despite

their relatively low complexity, the operations in iterative refinement are relatively slow and,

therefore, the gain is considerably reduced when many solves are necessary. This issue is

exacerbated in the case of LU-GMRES-IR5 variants, because the solves are carried out in

double instead of single precision as for LU-IR3 variants (u f = S).

In the second row of Figure 6.4 we report some cases where mixed precision iterative re-

finement does not reduce execution time. Chevron4 is a relatively small 2D problem where

the cost of the solve and the matrix–vector product relative to that of the factorization is

high; as a result, even for a moderate number of refinement iterations, variant DMUMPS

achieves the best execution time and all other variants are much slower. perf009ar is one

where the single precision factorization is only 1.6 times faster than the double precision

one and, additionally, it produces little fill-in (as shown by the small ratio Slv./NNZ in Ta-

ble 6.1) and so the relative cost of computing the residual in quadruple precision is high.

Finally, CarBody25M is badly conditioned and variants based on single precision factoriza-

tion either do not converge or require so many iterations that the execution time is higher

than that of DMUMPS. It is however worth noting that on these particular matrices variants

based on single precision factorization may be slower than DMUMPS but at a significantly

reduced memory cost (as shown in Table 6.3).



132 6.4. PERFORMANCE ANALYSIS

nlpkkt80 Serena Geo_1438 Bump_2911 Cube_Coup_dt0
0

0.25

0.5

0.75

1

CEDCEDCEDCEDCED

3 2
2 3 2

N
o

rm
al

iz
ed

m
em

o
ry

b
y

D
M

U
M

P
S

Krylov Factors Active Aq

vas_stokes_1M fem_hifreq_circuit CarBody25M
0

0.25

0.5

0.75

1

CEDCEDCED

>i
tm

ax

>i
tm

ax

2
72 12

N
o

rm
al

iz
ed

m
em

o
ry

b
y

D
M

U
M

P
S

C: LU, u f =D

D: LU, u f =S

E: GMRES, u f =S

Figure 6.5: Memory consumption for different LU-IR3 and LU-GMRES-IR5 variants nor-
malized by that of DMUMPS, for a subset of our test matrices (denoted by their ID on the
x-axis). The bars show the memory breakdown in factors memory, active memory over-
head, the storage for the Krylov basis (LU-GMRES-IR5 variant only), and the storage for the
matrix in quadruple precision. Each variant bar is split into two subbars corresponding to
the peak consumption during the factorization and solve phases, respectively (and thus
the overall required memory by the variant is the maximum of the two peaks). We print
on top of the LU-GMRES-IR5 variant the maximum size reached by the Krylov basis over
the refinement iterations. We fix u = ug = up = D and ur = Q. All the variants (C, D, and E)
provide a forward error of order 10−16.

6.4.4.2 Detailed memory consumption analysis. One distinctive feature of the multifrontal

method in comparison with left or right-looking ones is in the way it uses memory as ex-

plained in section 2.2.3.4. In addition to the memory needed to store the factors which

grows monotonically throughout the factorization, the multifrontal method also needs a

temporary workspace which we refer to as active memory to store the contribution blocks.

As a result, the peak memory consumption achieved in the course of the factorization is

generally higher than the memory needed to store the factors. It must also be noted that



6. ITERATIVE REFINEMENT FOR SPARSE APPROXIMATE FACTORIZATIONS 133

parallelism does not have any effect on the memory needed to store the factors but gen-

erally increases the size of the active memory: this is because more node of the tree are

processed at the same time (see Figure 2.6) and, so, more contribution blocks have to be

stored at the same time. For a thorough discussion of the memory consumption in the

multifrontal method we refer the reader to the paper by Agullo et al. [5].
We assume that at the end of the factorization all the active memory is freed and only

the factors are left in memory. It is only at this moment that the original problem matrix is

cast to quadruple precision for computing the residual at each refinement iteration. There-

fore, the active memory overhead and the memory required to store a quadruple precision

version of the matrix do not accumulate. In our implementation, the LU-GMRES-IR5 vari-

ants with up = u 2 = D also require the factors to be cast to double precision which we

do upon completion of the factorization, when the active memory is freed as described in

section 6.4.3.2. We also report the size of the Krylov basis in the GMRES solver: although in

most of our experiments this is completely negligible, there might be cases (we will show

one) where the number of GMRES iterations is sufficiently high to make the memory con-

sumed by the Krylov basis relevant. Finally, we do not count the memory consumption of

the solution, residual and correction vectors.

All these assumptions lead us to Figure 6.5 where we present the normalized memory

consumption of certain LU-IR3 and LU-GMRES-IR5 variants relative to that of variant

DMUMPS for a selected subset of problems. We do not include variants using ur = D

because they behave very similarly to variants with ur = Q. For each problem and variant

the bar is split in two parts showing that the memory consumption peak can happen during

and after the factorization, respectively.

In the first row we report problems that behave well, which corresponds to the most

common case as shown in Table 6.3. It shows, as expected, that LU-IR3 with single precision

factorization consumes half as much memory as DMUMPS because the memory needed

to store the problem matrix in quadruple precision does not exceed the active memory

overhead. Thus, the highest memory consumption corresponds to the single precision

factorization peak. GMRES-based variant (up = D) casts the factors to double precision

which exceeds the peak of the single precision factorization. Nonetheless, even if on top of

this we have to add the memory needed to store the quadruple precision matrix, the overall

consumption is lower than the double precision factorization peak by a factor which can

be almost up to 50% on this set, making the memory consumption of the LU-GMRES-

IR5 variant almost identical to that of the LU-IR3 one in a few cases (such as matrices

nlpkkt80 and Serena). As for the LU-IR3 variant with u f = D, it clearly does not bring any

improvement with respect to DMUMPS but no loss either because the memory for storing

the matrix in quadruple precision is much lower than the active memory overhead.

In the second row of Figure 6.5 we report problems where the memory reduction is not

as good, for four different reasons, the last two of which are exclusive to LU-GMRES-IR5.

1. In the case of CarBody25M, the single precision factorization consumes more than

half the memory of the double precision one (about 55%). This is because the relative

weight of the symbolic data structures, which is counted as part of the active memory

overhead and does not depend on the factorization precision, is high for this matrix.



134 6.4. PERFORMANCE ANALYSIS

2. In the case of fem_hifreq_circuit and CarBody25M the factorization generates little

fill-in which makes the relative weight of the quadruple precision matrix copy signif-

icant compared with the size of the factors. Here this storage remains less than the

active memory overhead and so the overall memory consumption of LU-IR3 is not

impacted; however, it does impact LU-GMRES-IR5, leading to less memory savings.

3. In the case of vas_stokes_1M and fem_hifreq_circuit (and to a lesser extent 24) the

active memory overhead represents a smaller fraction of the total memory, further

reducing the memory savings for LU-GMRES-IR5.

4. Finally, fem_hifreq_circuit (and to a lesser extent CarBody25M) is one of the few matri-

ces having a non-negligible Krylov basis memory footprint, showing that an increase

in the number iterations for the GMRES to converge diminishes here the potential

memory gain.

6.4.5 Performance of LU-IR and LU-GMRES-IR using approximate factor-
izations

In this set of experiments we are interested in studying the performance of LU-IR3 and

LU-GMRES-IR5 combined with BLR, static pivoting, and BLR with static pivoting. For each

experiment, we use a selected set of matrices from Table 6.1 which are representative of

different types of behavior that can be encountered in practice.

These approximation techniques have two conflicting effects on the performance: if,

on the one hand, they reduce the time and memory of the factorization, on the other hand,

they increase the number of refinement iterations.

6.4.5.1 BLR factorization. In Table 6.4 we present the execution time and memory con-

sumption of four iterative refinement variants using low-rank BLR factorization for differ-

ent values of the compression threshold τb , and in Table 6.5 we provide the associated

factorizations, LU solves, and matrix–vector products execution times. All variants provide

a forward error on the solution equivalent to the one of DMUMPS. If τb = “full-rank”, the

factorization is run without BLR, this is a standard factorization as in section 6.4.4. It should

be noted that in this case the double precision factorization LU-IR3 variant is equivalent to

DMUMPS and we will refer to it as DMUMPS in the text. We denote by “—” the cases where

convergence is not reached and, for each matrix, we highlight in bold the execution time

and memory consumption that do not exceed by more than 10% the best execution time

or memory consumption. We choose to work with the default BLR settings of MUMPS, in

which case the data in the active memory is not compressed with low-rank approximations.

We consider the compression of the active memory in the next section 6.4.5.2.

The experimental results of Table 6.4 are in good agreement with the theoretical conver-

gence conditions of Theorems 6.1 and 6.2 developed in section 6.3. We can clearly see how

the robustness of the presented variants is related to both the condition number κ(A) of

the matrix (specified for each matrix in Table 6.1) and the BLR threshold τb . Convergence

is not achieved for excessively large values of the BLR threshold; the largest τb value for



6. ITERATIVE REFINEMENT FOR SPARSE APPROXIMATE FACTORIZATIONS 135

which convergence is achieved depends on the matrix condition number and, in general,

it is smaller for badly conditioned problems. In the case of LU-GMRES-IR5 variants, which

are more robust, the BLR threshold can be pushed to larger values without breaking con-

vergence. Note that there is no situation where a variant does not converge when in theory

it should (that is, when the convergence condition is met). However, as the theoretical con-

vergence conditions in Theorems 6.1 and 6.2 can be pessimistic, there are several cases

where convergence is achieved even though the theoretical convergence condition is not

met.

The use of BLR with a good choice of compression thresholdτb generally results in sub-

stantial reductions of the LU-IR3 and LU-GMRES-IR5 execution times. As the BLR threshold

increases, the operational complexity and, consequently, the execution time of the factor-

ization and solve operations decreases; conversely, the number of iterations increases up

to the point where convergence may not be achieved anymore. The optimal BLR threshold

value which delivers the lowest execution time obviously depends on the problem. It must

be noted that even though the LU-GMRES-IR5 variants achieve convergence for larger τb

values, this leads to an excessive number of iterations whose cost exceeds the improve-

ment provided by BLR; as a result, these variants are slower than LU-IR3 ones (u f = S but

also u f = D) in all cases. Consequently, the single precision factorization LU-IR3 variant

generally achieves the best execution time on this set of problems, similarly to what was

observed in section 6.4.4, with a few exceptions. On perf009ar the double precision factor-

ization LU-IR3 variant is the best due to the fact that similarly to the full-rank case (see

section 6.4.4.1) the BLR factorization is less than twice as fast when single precision is used

instead of double for the same τb value; additionally, a substantial number of iterations is

needed to achieve convergence. It is worth mentioning that on this matrix the LU-GMRES-

IR5 variant with ug = up = D is faster than the single precision factorization LU-IR3 variant

(36.9s versus 40.3s) and consumes less memory than the double precision factorization

LU-IR3 variant (20.0GB versus 37.1GB). On CarBody25M, DMUMPS is the fastest variant

as in the full-rank case; this is due to the fact that, on this problem, BLR does not achieve a

good reduction of the operational complexity and, therefore, of the execution time.

As for the storage, the use of BLR leads to a different outcome with respect to the case

where a full-rank factorization is used (see section 6.4.4) where the single precision factor-

ization LU-IR3 variant is the best. This is due to the combination of two factors. First, when

BLR is used, the relative weight of the active memory is higher because it corresponds to

data which is not compressed due to the choice of parameters we have made; consequently,

the memory consumption peak is often reached during the factorization rather than dur-

ing the refinement steps. Second, the memory consumption of the factorization decreases

monotonically when the BLR threshold is increased. As a result of these two effects, the

LU-GMRES-IR5 variants achieve the lowest memory consumption on this set of problems,

because they can preserve convergence for larger values of τb than the LU-IR3 variants

can. For example, on tminlet3M the LU-GMRES-IR5 variant with ug = up = D consumes

almost 15% less memory than the LU-IR3 one with u f = S (70.9GB versus 82.4GB), on thm-

gas the LU-GMRES-IR5 variant with ug = up = D consumes almost 30% less memory than

variant LU-IR3 with u f = S (43.7GB versus 61.4GB), and on matrix 24 the LU-GMRES-IR5



136 6.4. PERFORMANCE ANALYSIS

Table 6.4: Execution time, memory consumption and number of LU solve calls of IR variants
for the industrial matrices listed in bold in Table 6.1 and depending on the compression
threshold τb . We fix ur = u = D.

Solver LU LU GMRES GMRES LU LU GMRES GMRES LU LU GMRES GMRES

u f D S S S D S S S D S S S

up=ug — — D S — — D S — — D S

ID τb Time (s) Memory (GB) Nb LU solves

E
le

ct
ro

P
h

ys
10

M full-rank 265.2 154.0 166.5 163.3 272.0 138.0 171.3 138.0 1 3 5 7
1E-10 101.0 70.5 73.7 72.7 158.0 84.5 84.6 84.6 2 3 5 7
1E-08 93.1 70.0 72.8 72.1 157.0 80.6 82.2 82.2 2 3 5 7
1E-06 91.1 64.9 68.2 68.5 149.0 77.8 79.6 79.6 3 3 6 10
1E-04 88.3 66.3 69.3 70.8 143.0 73.6 77.0 77.0 4 4 7 13
1E-02 89.8 71.4 75.0 128.1 147.0 73.6 73.6 73.6 9 9 11 125
1E-01 97.8 73.6 81.0 119.5 147.0 71.8 73.4 73.4 19 18 24 115

D
ri

vA
er

6M full-rank 91.8 67.6 77.9 77.4 81.6 41.7 52.9 41.7 1 3 5 7
1E-10 55.6 43.7 46.5 46.9 54.5 28.2 28.2 28.2 2 6 7 10
1E-08 54.3 42.2 44.8 46.1 51.9 26.9 26.9 26.9 4 6 7 11
1E-06 62.6 47.8 44.7 45.8 49.3 25.5 25.5 25.5 15 15 9 13
1E-04 — — 73.2 106.2 — — 24.0 24.0 — — 45 95
1E-02 — — 248.4 404.3 — — 22.7 22.7 — — 256 502
1E-01 — — 471.3 1490.4 — — 22.4 41.0 — — 528 1997

tm
in

le
t3

M full-rank 294.5 136.2 157.9 176.3 241.0 121.0 169.9 121.0 1 7 15 56
1E-10 232.9 158.8 174.0 181.2 188.0 118.0 169.9 118.0 2 7 16 55
1E-08 204.9 149.7 165.3 182.7 171.0 114.0 161.9 114.0 3 7 17 79
1E-06 179.0 88.3 98.8 105.5 154.0 82.4 93.8 82.8 5 7 16 54
1E-04 — — 105.6 116.3 — — 70.9 70.9 — — 69 181

p
er

f0
09

ar full-rank 46.1 57.5 52.0 110.0 55.6 28.9 38.1 28.9 1 28 16 92
1E-10 32.9 40.3 36.9 83.1 38.7 20.5 25.6 20.5 2 22 15 94
1E-08 33.6 41.5 37.3 88.0 37.1 19.7 22.8 19.7 4 26 16 107
1E-06 — — 40.9 187.8 — — 20.0 18.6 — — 25 280
1E-04 — — 658.3 — — — 36.6 — — — 949 —
1E-02 — — 2224.1 — — — 98.1 — — — 3338 —

el
as

ti
ci

ty
-3

d full-rank 156.7 — 118.6 — 153.0 — 103.6 — 1 — 11 —
1E-10 110.2 — 82.3 — 95.5 — 72.1 — 2 — 10 —
1E-08 96.3 — 68.6 — 91.6 — 56.8 — 5 — 10 —
1E-06 — — 57.9 — — — 44.1 — — — 13 —
1E-04 — — 125.3 — — — 39.0 — — — 121 —

lf
m

_a
u

g5
M full-rank 536.2 254.5 269.3 353.6 312.0 157.0 187.5 157.0 1 4 5 46

1E-10 313.3 199.8 210.0 230.9 240.0 141.0 147.6 144.0 2 4 7 37
1E-08 260.2 119.2 130.1 162.3 218.0 112.0 116.0 116.0 3 4 9 60
1E-06 223.2 100.4 110.1 131.3 199.0 107.0 107.0 107.0 4 4 9 47
1E-04 212.3 95.8 105.4 124.7 200.0 101.0 103.0 103.0 22 20 19 65
1E-02 — — 482.6 1111.0 — — 96.8 96.8 — — 367 1763

C
ar

B
o

d
y2

5M full-rank 62.9 — 109.8 — 77.6 — 54.3 — 1 — 24 —
1E-10 63.3 — 90.8 — 65.5 — 44.0 — 3 — 23 —
1E-08 68.9 — 91.3 — 64.8 — 41.8 — 6 — 23 —
1E-06 — — 299.4 — — — 55.8 — — — 140 —

th
m

ga
s full-rank 97.6 65.4 79.8 79.6 192.0 97.7 141.7 97.7 1 4 7 10

1E-10 88.9 63.7 75.8 69.5 137.0 70.9 110.5 71.0 2 4 7 7
1E-08 81.3 59.5 66.1 66.7 131.0 67.5 92.1 67.6 3 4 7 7
1E-06 85.1 61.4 65.6 70.8 118.0 61.4 70.4 61.5 8 8 9 13
1E-04 — — 147.5 131.4 — — 53.7 53.7 — — 53 48
1E-02 — — 1043.9 2380.8 — — 45.5 45.5 — — 523 1259
1E-01 — — 3340.5 3155.2 — — 48.9 43.7 — — 1399 1649



6. ITERATIVE REFINEMENT FOR SPARSE APPROXIMATE FACTORIZATIONS 137

Table 6.5: Execution time of the factorizations, LU solves, and matrix–vector products of
IR variants associated with the runs in Table 6.4.

Solver LU LU GMRES GMRES LU LU GMRES GMRES LU LU GMRES GMRES

u f D S S S D S S S D S S S

up=ug — — D S — — D S — — D S

ID τb Factorization (s) Solve (s) SpMV (s)

E
le

ct
ro

P
h

ys
10

M full-rank 262.0 147.0 147.0 147.0 3.22 2.31 3.22 2.31 0.04 0.04 0.04 0.04
1E-10 99.4 68.8 68.8 68.8 0.77 0.55 0.77 0.55 0.04 0.04 0.04 0.04
1E-08 91.6 68.3 68.3 68.3 0.72 0.53 0.72 0.53 0.04 0.04 0.04 0.04
1E-06 88.9 63.3 63.3 63.3 0.69 0.51 0.69 0.51 0.04 0.04 0.04 0.04
1E-04 85.7 64.2 64.2 64.2 0.63 0.50 0.63 0.50 0.04 0.04 0.04 0.04
1E-02 83.3 66.7 66.7 66.7 0.69 0.49 0.69 0.49 0.04 0.04 0.04 0.04
1E-01 84.3 64.2 64.2 64.2 0.67 0.48 0.67 0.48 0.04 0.04 0.04 0.04

D
ri

vA
er

6M full-rank 89.6 57.5 57.5 57.5 2.21 1.65 2.21 1.65 0.04 0.04 0.04 0.04
1E-10 53.6 38.5 38.5 38.5 0.99 0.83 0.99 0.83 0.04 0.04 0.04 0.04
1E-08 50.3 37.1 37.1 37.1 0.96 0.81 0.96 0.81 0.04 0.04 0.04 0.04
1E-06 48.2 35.5 35.5 35.5 0.92 0.78 0.92 0.78 0.04 0.04 0.04 0.04
1E-04 — — 33.8 33.8 — — 0.86 0.76 — — 0.04 0.04
1E-02 — — 32.7 32.7 — — 0.84 0.74 — — 0.04 0.04
1E-01 — — 32.4 32.4 — — 0.83 0.73 — — 0.04 0.04

tm
in

le
t3

M full-rank 293.0 130.0 130.0 130.0 1.49 0.82 1.49 0.82 0.08 0.08 0.08 0.08
1E-10 231.0 155.0 155.0 155.0 0.93 0.47 0.93 0.47 0.08 0.08 0.08 0.08
1E-08 202.0 146.0 146.0 146.0 0.91 0.46 0.91 0.46 0.08 0.08 0.08 0.08
1E-06 175.0 85.2 85.2 85.2 0.73 0.37 0.73 0.37 0.08 0.08 0.08 0.08
1E-04 — — 63.4 63.4 — — 0.59 0.29 — — 0.08 0.08

p
er

f0
09

ar full-rank 45.0 30.2 30.2 30.2 1.09 0.85 1.09 0.85 0.13 0.13 0.13 0.13
1E-10 31.3 24.1 24.1 24.1 0.75 0.61 0.75 0.61 0.13 0.13 0.13 0.13
1E-08 30.0 22.9 22.9 22.9 0.81 0.59 0.81 0.59 0.13 0.13 0.13 0.13
1E-06 — — 22.1 22.1 — — 0.70 0.58 — — 0.13 0.13
1E-04 — — 21.1 — — — 0.67 — — — 0.13 —
1E-02 — — 19.8 — — — 0.66 — — — 0.13 —

el
as

ti
ci

ty
-3

d full-rank 154.0 — 84.1 — 2.73 — 2.73 — 0.03 — 0.03 —
1E-10 108.0 — 69.0 — 1.07 — 1.07 — 0.03 — 0.03 —
1E-08 91.5 — 57.2 — 0.94 — 0.94 — 0.03 — 0.03 —
1E-06 — — 45.7 — — — 0.82 — — — 0.03 —
1E-04 — — 39.4 — — — 0.70 — — — 0.03 —

lf
m

_a
u

g5
M full-rank 532.0 245.0 245.0 245.0 4.22 2.36 4.22 2.36 0.03 0.03 0.03 0.03

1E-10 310.0 196.0 196.0 196.0 1.66 0.94 1.66 0.94 0.03 0.03 0.03 0.03
1E-08 256.0 116.0 116.0 116.0 1.39 0.77 1.39 0.77 0.03 0.03 0.03 0.03
1E-06 218.0 97.4 97.4 97.4 1.28 0.72 1.28 0.72 0.03 0.03 0.03 0.03
1E-04 186.0 82.3 82.3 82.3 1.17 0.65 1.17 0.65 0.03 0.03 0.03 0.03
1E-02 — — 70.7 70.7 — — 1.12 0.59 — — 0.03 0.03

C
ar

B
o

d
y2

5M full-rank 60.8 — 47.4 — 2.07 — 2.07 — 0.31 — 0.31 —
1E-10 57.4 — 46.6 — 1.77 — 1.77 — 0.31 — 0.31 —
1E-08 56.6 — 45.4 — 1.79 — 1.79 — 0.31 — 0.31 —
1E-06 — — 45.2 — — — 1.78 — — — 0.31 —

th
m

ga
s full-rank 95.1 55.6 55.6 55.6 2.51 2.37 2.51 2.37 0.10 0.10 0.10 0.10

1E-10 83.6 55.4 55.4 55.4 2.59 1.99 2.59 1.99 0.10 0.10 0.10 0.10
1E-08 74.8 49.5 49.5 49.5 2.10 2.43 2.10 2.43 0.10 0.10 0.10 0.10
1E-06 67.6 45.1 45.1 45.1 2.10 1.95 2.10 1.95 0.10 0.10 0.10 0.10
1E-04 — — 41.8 41.8 — — 1.97 1.86 — — 0.10 0.10
1E-02 — — 38.7 38.7 — — 1.92 1.86 — — 0.10 0.10
1E-01 — — 37.9 37.9 — — 2.36 1.89 — — 0.10 0.10



138 6.4. PERFORMANCE ANALYSIS

variant with ug = up = D consumes more than 35% less memory than variant LU-IR3 with

u f = D (41.8GB versus 64.8GB). It is worth pointing out that the value of τb for which LU-

GMRES-IR5 achieves the lowest possible memory consumption is not always the largest

value for which convergence is still possible. This is because for a large number of iterations

the memory needed to store the Krylov basis may exceed the savings obtained with BLR.

This problem can be overcome or mitigated by choosing an appropriate value for the τg

threshold or, similarly, using a restarted GMRES method; we leave this analysis for future

work.

We finally compare the two LU-GMRES-IR5 variants ug = up = D and ug = up = S.

When ug = up = S, LU-GMRES-IR5 avoids the cast of the LU factors from single to double

precision, and thus reduces memory consumption compared with ug = up = D. However,

as explained above, the relative weight of the factors with respect to the active memory is

smaller as τb increases, and so the reduction achieved by LU-GMRES-IR5 with ug = up = S

grows smaller until the point where both variants achieve a similar memory consumption.

On our matrix set, for the values ofτb where the LU-IR3 with u f = S does not converge, LU-

GMRES-IR5 with ug = up = S does not achieve significant memory reductions compared

with LU-GMRES-IR5 with ug = up = D (at best 7% on perf009ar, 18.6GB versus 20.0GB).

6.4.5.2 BLR factorization with compressed active memory. When using BLR, as explained in

section 2.2.4.1, we have the flexibility to choose whether the contribution blocks are com-

pressed or not. With the default settings, the MUMPS BLR factorization only compresses

the factors; the active memory, composed of the contribution blocks, remains full-rank.

If we choose to compress the contribution blocks as well, we reduce the active memory

overhead during factorization and, then, we further reduce the peak memory consumption.

However, compressing the contributions blocks does not reduce the operational complex-

ity and even adds flop overhead. In addition, compressing the contribution blocks will also

exchange efficient BLAS-3 kernels (i.e., dense matrix–matrix product) for slower operations

(i.e., compression kernels). For these reasons, we can expect a higher execution time for

sequential factorization. Consequently, compressing the active memory can reduce the

memory peak, but at the cost of increasing the execution time. It is, therefore, particularly

relevant for applications where memory is the constraint. Note that the increased execu-

tion time can be mitigated in highly parallelized settings where the application requires

many communications that can be made faster by compressing the active memory.

We present, in Table 6.6, the corresponding execution time and memory consumption

as in Table 6.4 but with the active memory compression activated.

In terms of the numerics, we expect that compressing the active memory will not change

much the numerical behavior of the methods because with the contribution blocks com-

pressed or not, the perturbation introduced will still be of order the compression threshold

τb , so the convergence conditions of Theorems 6.1 and 6.2 should not be affected. It is ac-

tually what we observed from our experiments. Indeed, Table 6.6 displays nearly identical

convergence behavior as in the previous Table 6.4. That is, if a given variant was converging,

it still converges, conversely if it was not converging it still does not; in addition, the number

of LU solve calls is also relatively similar.



6. ITERATIVE REFINEMENT FOR SPARSE APPROXIMATE FACTORIZATIONS 139

Table 6.6: Execution time, memory consumption and number of LU solve calls of IR variants
as in Table 6.4 but with compressed active memory.

Solver LU LU GMRES GMRES LU LU GMRES GMRES LU LU GMRES GMRES

u f D S S S D S S S D S S S

up=ug — — D S — — D S — — D S

ID τb Time (s) Memory (GB) Nb LU solves

E
le

ct
ro

P
h

ys
10

M full-rank 265.2 154.0 166.5 163.3 272.0 138.0 171.3 138.0 1 3 5 7
1E-10 87.7 64.4 66.5 66.6 115.0 59.7 61.6 61.6 2 3 5 7
1E-08 86.0 62.7 64.6 64.8 109.0 56.4 56.4 56.4 2 3 5 7
1E-06 82.0 60.5 61.6 64.1 102.0 53.1 54.9 54.9 3 3 4 10
1E-04 80.0 58.1 61.2 62.6 95.9 49.9 49.9 49.9 4 4 7 13
1E-02 81.0 63.0 65.7 105.6 91.8 47.8 47.8 47.8 9 9 12 98
1E-01 84.4 64.9 65.9 130.5 89.9 48.7 48.7 48.7 19 19 16 154

D
ri

vA
er

6M full-rank 91.8 67.6 77.9 77.4 81.6 41.7 52.9 41.7 1 6 8 12
1E-10 66.4 70.4 72.4 74.4 44.2 24.6 25.3 24.6 2 7 7 12
1E-08 63.5 64.6 67.2 69.3 40.2 22.5 22.6 22.6 4 6 7 12
1E-06 65.8 65.6 61.5 62.8 39.5 20.7 20.9 20.9 14 16 9 13
1E-04 — — 75.7 163.6 — — 19.0 19.0 — — 45 168
1E-02 — — 246.9 410.2 — — 17.6 17.6 — — 256 505
1E-01 — — 472.5 909.7 — — 22.5 17.2 — — 531 1171

tm
in

le
t3

M FR 294.5 136.2 157.9 176.3 241.0 121.0 169.9 121.0 1 7 15 56
1E-10 341.9 187.7 202.9 206.9 176.0 114.0 169.9 114.0 2 7 16 48
1E-08 299.9 181.2 194.1 200.2 156.0 110.0 161.9 110.0 3 10 16 53
1E-06 245.8 117.1 127.6 136.9 133.0 78.0 94.2 78.0 6 7 16 61
1E-04 — — 124.6 155.5 — — 59.2 55.8 — — 85 283

p
er

f0
09

ar full-rank 46.1 57.5 52.0 110.0 55.6 28.9 38.1 28.9 1 28 16 92
1E-10 36.0 44.0 41.0 85.6 35.6 19.4 25.6 19.4 2 23 16 93
1E-08 36.0 42.5 39.0 101.6 33.9 18.2 22.8 18.2 4 23 16 115
1E-06 — — 43.7 125.6 — — 20.0 16.9 — — 25 173
1E-04 — — 896.4 — — — 36.7 — — — 1284 —
1E-02 — — 2262.4 — — — 98.1 — — — 3344 —

el
as

ti
ci

ty
-3

d full-rank 156.7 — 118.6 — 153.0 — 103.6 — 1 — 11 —
1E-10 126.3 — 93.5 — 91.1 — 72.1 — 3 — 10 —
1E-08 107.8 — 76.7 — 84.0 — 56.5 — 5 — 10 —
1E-06 — — 64.5 — — — 43.8 — — — 13 —
1E-04 — — 127.8 — — — 32.1 — — — 121 —

lf
m

_a
u

g5
M full-rank 536.2 254.5 269.3 353.6 312.0 157.0 187.5 157.0 1 4 5 46

1E-10 383.4 234.8 250.2 263.6 221.0 135.0 148.6 135.0 2 4 10 35
1E-08 325.2 143.2 152.7 170.9 204.0 105.0 105.0 105.0 3 4 8 40
1E-06 222.2 97.3 107.1 142.8 181.0 91.5 91.5 91.5 4 4 9 69
1E-04 208.0 92.0 106.4 117.0 160.0 81.1 81.2 81.2 23 20 21 59
1E-02 — — 413.8 510.4 — — 72.2 72.2 — — 339 732

C
ar

B
o

d
y2

5M full-rank 62.9 — 109.8 — 77.6 — 54.3 — 1 — 24 —
1E-10 65.7 — 93.4 — 64.1 — 44.0 — 3 — 24 —
1E-08 72.8 — 91.6 — 63.1 — 41.8 — 7 — 24 —
1E-06 — — 448.4 — — — 55.8 — — — 214 —

th
m

ga
s full-rank 97.6 65.4 79.8 79.6 192.0 97.7 141.7 97.7 1 4 7 10

1E-10 87.9 71.0 79.9 76.9 137.0 70.9 110.5 70.9 2 4 7 7
1E-08 81.3 65.4 72.3 72.3 131.0 67.5 92.1 67.5 4 4 7 7
1E-06 85.1 64.3 68.6 73.5 118.0 61.4 70.4 61.4 8 8 9 13
1E-04 — — 146.0 135.2 — — 48.4 43.8 — — 52 49
1E-02 — — 1081.9 3149.2 — — 36.6 34.6 — — 522 1353
1E-01 — — 2709.2 4624.8 — — 48.6 32.5 — — 1399 2480



140 6.4. PERFORMANCE ANALYSIS

It is expected that using the active memory compression shall increase the execution

time and decrease the memory consumption of LU-IR3. While it will also increase the

execution time of LU-GMRES-IR5, it might not necessarily decrease its peak memory con-

sumption. Indeed, the memory peak of LU-GMRES-IR5 can happen during either the factor-

ization in precision u f or the refinement steps where the factors are fully cast in precision

up , as illustrated in Figure 6.2. Actually, both are possible in practice depending on the

MUMPS settings, the problem, and the parallelization. In the first scenario, where the peak

is reached during the factorization, the active memory compression reduces the memory

consumption of LU-GMRES-IR5. Though, it is not the case in the second scenario where

the peak is reached during the refinement steps. In addition, as stated in section 6.4.5.1,

the relative weight of the non-compressed active memory increases with BLR, which helps

LU-GMRES-IR5 to be more competitive regarding memory consumption when compared

with LU-IR3. If the active memory is compressed, its relative weight will be lowered, and

we might lose this previous positive property for LU-GMRES-IR5.

We emphasize that matrices DrivAer6M, tminlet3M, perf009ar, and elasticity-3D behave

as expected: the best time among all the variants and threshold τb is worse with the active

memory compression, but the best memory consumption is better. To illustrate this point,

by looking specifically at tminlet3M, we can observe that the execution time increases from

88.3s to 117.1s (×0.75), and the memory consumption decreases from 70.9Go to 55.8Go

(×1.27).

Some of the matrices do not match the expected behavior. For example, with Electro-

Phys10M, we reduce both memory and time. It may be due to the reduction of the commu-

nications, which, from logs not reported in this document, decrease from 8.2Go to 0.9Go.

With lfm_aug5M, we observe that for small τb the execution time is increased as expected,

but the tendency is reversed from τb = 10−6 and higher, where the execution time starts

to decrease. It could also be due to the reduction of communications which, for τb = 10−4,

decrease from 13.8Go to 1.9Go. For CarBody25M, the execution time is slightly worse, but

the memory consumption is not significantly improved. The reason is probably that, as

the matrix does not compress well, the active memory cannot be compressed enough to

obtain a noticeable gain.

6.4.5.3 Static pivoting factorization. We now turn our attention to the use of static pivoting.

We report in Table 6.7 the execution time and memory consumption of three iterative

refinement variants for different values of the static pivoting threshold τs . All variants are

stopped when they reach a forward error on the solution equivalent to the one of DMUMPS.

If τs = “partial”, the factorization is run in standard MUMPS threshold partial pivoting.

It should be noted that in this case the double precision factorization LU-IR3 variant is

equivalent to DMUMPS.

Once again the observed convergence behaviors are in good agreement with Theo-

rems 6.1 and 6.2 as explained below. In the case of static pivoting, the execution time of

the factorization does not depend on τs ; in order to minimize the overall solution time,

the goal is therefore to achieve the fastest possible convergence. This is a complex issue: a

smaller perturbation τs does not always mean a faster convergence, because the value of



6. ITERATIVE REFINEMENT FOR SPARSE APPROXIMATE FACTORIZATIONS 141

Table 6.7: Execution time (in seconds) and number of LU solve calls of IR variants for
a subset of the matrices listed in Table 6.1 and depending on the perturbation τs . ρn =
max{max |L |, max |U |}/max |A| is a lower bound of the growth factor. We fix ur = u = D.

Solver LU LU GMRES LU LU GMRES

u f D S S D S S

up=ug — — D — — D

ID τs Time (s) Nb LU solves ρn

E
le

ct
ro

P
h

ys
10

M partial 265.2 154.0 166.5 1 3 5 9E-1
1E-10 244.9 145.1 160.7 1 3 5 9E-1
1E-08 244.9 145.1 160.7 1 3 5 9E-1
1E-06 244.9 145.1 161.1 1 3 5 9E-1
1E-04 244.9 145.1 161.1 1 3 5 9E-1
1E-02 244.9 145.1 161.6 1 3 5 9E-1

tm
in

le
t3

M partial 294.5 136.2 157.9 1 7 15 4E2
1E-10 258.1 121.0 141.6 2 9 16 2E4
1E-08 258.1 121.0 141.5 2 9 16 2E4
1E-06 258.1 121.0 144.7 2 9 18 2E4
1E-04 — — 1659.9 — — 985 4E3

lf
m

_a
u

g5
M partial 536.2 254.5 269.3 1 4 5 5E4

1E-10 — — — — — — 2E9
1E-08 508.0 — — 7 — — 2E7
1E-06 490.3 — — 3 — — 2E5
1E-04 499.2 — 773.2 5 — 124 2E3
1E-02 1501.5 780.3 484.9 231 233 59 5E3

th
m

ga
s partial 97.6 65.4 79.8 1 4 7 2E0

1E-10 88.7 63.9 78.9 1 4 7 2E0
1E-08 88.7 63.9 78.9 1 4 7 2E0
1E-06 88.7 63.9 78.9 1 4 7 2E0
1E-04 88.7 63.9 78.9 1 4 7 2E0
1E-02 113.4 110.8 109.8 9 23 17 2E0

τs also directly impacts the growth factor ρn . Thus, there is an optimal value of τs , which

is clearly problem dependent, that leads to the fastest convergence by balancing the u f ρn

and τs terms in the convergence condition. To confirm this, Table 6.7 reports ρn , a lower

bound on the true growth factor, that can be used as a cheap, but rough indicator of the be-

havior ofρn (the trueρn would be extremely expensive to compute for such large matrices).

There is a clear trend of ρn decreasing as τs increases, which explains, for example, why

on lfm_aug5M convergence is achieved for large τs . For many matrices in our set, such as

tminlet3M in Table 6.7, static pivoting slightly accelerates the factorization without exces-

sively deteriorating the convergence, and so allows for modest time gains overall. However,

for some matrices such as lfm_aug5M, static pivoting requires many iterations and can lead

to significant slowdowns compared with partial pivoting. It is however interesting to note

that, on lfm_aug5M, if the use of partial pivoting is impossible (for instance because the

available solver does not support it), the LU-GMRES-IR5 variant provides the best overall

execution time.



142 6.4. PERFORMANCE ANALYSIS

Table 6.8: Execution time (in seconds) and number of LU solve calls of IR variants for a
subset of the matrices listed in Table 6.1 and depending on the perturbation τb for a fixed
τs . The chosen τs is specified for each matrices. We fix ur = u = D.

Solver LU LU GMRES LU LU GMRES

u f D S S D S S

up=ug — — D — — D

ID τs τb Time (s) Nb LU solves

E
le

ct
ro

P
h

ys
10

M

partial
1E-10 101.0 70.5 73.7 2 3 5
1E-08 93.1 70.0 72.8 2 3 5
1E-06 91.1 64.9 68.2 3 3 6
1E-04 88.3 66.3 69.3 4 4 7
1E-02 89.8 71.4 75.0 9 9 11

10−8
1E-10 70.0 54.3 57.5 2 3 5
1E-08 66.6 52.4 55.3 2 3 5
1E-06 64.9 51.4 53.3 3 3 4
1E-04 73.1 51.0 53.7 5 5 7
1E-02 69.6 56.3 58.8 11 11 12

tm
in

le
t3

M

partial
1E-10 232.9 158.8 174.0 2 7 16
1E-08 204.9 149.7 165.3 3 7 17
1E-06 179.0 88.3 98.8 5 7 16
1E-04 — — 105.6 — — 69

10−8
1E-10 196.9 139.9 152.2 2 9 17
1E-08 181.9 133.7 149.8 3 9 21
1E-06 137.9 70.1 80.0 6 12 18
1E-04 — — 90.9 — — 71

lf
m

_a
u

g5
M

partial
1E-10 313.3 199.8 210.0 2 4 7
1E-08 260.2 119.2 130.1 3 4 9
1E-06 223.2 100.4 110.1 4 4 9
1E-04 212.3 95.8 105.4 22 20 19
1E-02 — — 482.6 — — 367

10−2
1E-10 592.9 353.8 218.2 231 233 59
1E-08 525.8 266.6 163.6 231 233 59
1E-06 456.1 247.3 138.1 231 233 59
1E-04 404.6 212.8 123.1 238 238 63
1E-02 — — 879.1 — — 838

10−6
1E-10 253.5 — — 3 — —
1E-08 200.2 — — 3 — —
1E-06 157.2 — — 4 — —
1E-04 166.4 — — 33 — —

6.4.5.4 BLR factorization with static pivoting. Finally in Table 6.8 we present the execu-

tion time and memory consumption of three iterative refinement variants (the same as in

section 6.4.5.3) for different values of the BLR compression threshold τb and a fixed value

of the static pivoting perturbation τs . All variants are stopped when they reach a forward

error on the solution equivalent to the one of DMUMPS. If τs = partial, the factorization is

run in standard MUMPS threshold partial pivoting and the results are then equivalent to



6. ITERATIVE REFINEMENT FOR SPARSE APPROXIMATE FACTORIZATIONS 143

the BLR results of section 6.4.5.1.

Theorems 6.1 and 6.2 applied to the case where BLR and static pivoting are used to-

gether states that the convergence conditions should be affected by the largest perturba-

tions max(τs ,τb ) and the termρn u f which depends on the growth factor. Our experiments

confirm this: values of τs or τb for which a given variant was not converging with BLR or

static pivoting alone still do not converge when they are combined, and, conversely, vari-

ants that were converging for BLR and static pivoting alone still converge when these two

approximations are used together. lfm_aug5M with τs = 10−6 illustrates an interesting

point of the error bound max(τs ,τb ) +ρn u f : convergence is only achieved for the variant

that uses a double precision factorization (u f = D), even for values of τb that are much

larger than the unit roundoff of single precision. This shows that the rule of thumb that the

factorizaton precision should be chosen as low as possible as long as u f ≤τb is not true in

presence of large element growth, since a smaller value of u f can be beneficial to absorb a

particularly large ρn .

While the reductions in execution time obtained by using static pivoting instead of

partial pivoting were modest for the full-rank factorization, they are larger for the BLR fac-

torization. Taking tminlet3M as an example, in full-rank the single precision factorization

LU-IR3 variant is only 1.12 (136s/121s) times faster after the activation of the static pivoting

(see Table 6.7), whereas in BLR it is 1.26 (88s/70s) times faster than (see Table 6.4). These

better reductions are explained by the fact that in the BLR factorization, static pivoting also

allows the panel reduction operation to be processed with low-rank operations (Amestoy

et al. [17]), which leads to a reduction of flops and thus a faster execution time.

6.4.6 Performance summary

To summarize the results presented in the previous sections, we report in Table 6.9 the best

execution time and memory consumption amongst all the previously reviewed iterative

refinement variants, for the industrial partners matrices and Queen_4147. All variants are

stopped when they reach a forward error on the solution equivalent to the one of DMUMPS.

We do not activate the active memory compression with BLR.

We obtain at best on lfm_aug5M a reduction of 5.6× in time and on thmgas a reduction

of 4.4× in memory. A greater variability is observed in the speedup with respect to the

memory gains. This is because numerous parameters affect the execution time which are

related to the numerical properties of the problems as well as to the features of the computer

architecture; in some extreme cases (such as CarBody25M) no speedup is observed at all. As

the best memory saving is sometimes obtained for aggressive values of the BLR threshold,

the execution time can be deteriorated due to a high number of iterations. We however note

that a balance between the two use cases can be struck to obtain large memory savings

while keeping a reasonable execution time: taking thmgas as an example, we can achieve

a 3.6×memory reduction (compared with the 2.8× reduction of the “best in time” variant)

while only leading to a 0.7× slowdown (compared with the 0.03× slowdown of the “best in

memory” variant).



144 6.4. PERFORMANCE ANALYSIS

Table 6.9: Best execution time and memory consumption improvements in comparison to
DMUMPS amongst all the presented IR variants (full-rank, BLR, static pivoting, and BLR
with static pivoting) for the industrial partners matrices (bold in Table 6.1) and Queen_4147.

ID DMUMPS Best in time Best in memory
Time (s) Memory (s) Time (s) Memory (s) Time (s) Memory (s)

ElectroPhys10M 265.2 272.0 51.0 (5.2×) 73.0 (3.7×) 80.7 (3.3×) 71.2 (3.8×)
DrivAer6M 91.8 81.6 37.8 (2.4×) 26.9 (3.0×) 471.3 (0.2×) 22.4 (3.6×)

Queen_4147 284.2 178.0 60.1 (4.7×) 50.7 (3.5×) 117.5 (2.4×) 50.3 (3.5×)
tminlet3M 294.5 241.0 70.1 (4.2×) 82.4 (2.9×) 105.6 (2.8×) 70.9 (3.4×)
perf009ar 46.1 55.6 30.8 (1.5×) 38.6 (1.4×) 187.8 (0.2×) 18.6 (3.0×)

elasticity-3d 156.7 153.0 56.0 (2.8×) 41.9 (3.7×) 125.3 (1.3×) 39.0 (3.9×)
lfm_aug5M 536.2 312.0 95.8 (5.6×) 101.0 (3.1×) 879.1 (0.6×) 91.6 (3.4×)

CarBody25M 62.9 77.6 62.9 (1.0×) 77.6 (1.0×) 91.3 (0.7×) 41.8 (1.9×)
thmgas 97.6 192.0 50.7 (1.9×) 67.5 (2.8×) 3155.2 (0.0×) 43.7 (4.4×)

6.4.7 Scalability and parallelism

Finally, in this section, we propose to study the performance of LU-IR3 and LU-GMRES-IR5

when we increase the parallelism, the computer resources, and the size of the problem. We

will focus on standard LU factorization as in section 6.4.4, and we will not consider the

approximation techniques covered in section 6.4.5.

6.4.7.1 Multithreading. The first source of parallelism in LU-IR3 and LU-GMRES-IR5 is

the multithreading which allows for the use of multiple cores in each MPI process. The

MUMPS solver uses multithreading to exploit node parallelism during the factorization (see

section 2.2.3.6); that is, to parallelize the partial factorizations of the nodes of the assembly

tree. With the advanced multithreading option of L’Excellent and Sid-Lakhdar [142], it can

also be used to exploit tree parallelism; that is, to work concurrently on different tree nodes.

Multithreading is also used for more negligible operations inside our iterative refinement

algorithms, such as the SpMV, the explicit cast of the factors, or some other dense operations

occurring in the GMRES solver.

We represent in Figure 6.6 the execution times of LU-IR3 and LU-GMRES-IR5 for 1, 9,

and 18 threads per MPI for each matrix of our set and normalized by that of DMUMPS. Note

that the execution times with the 18 threads configuration correspond to the experiments

in Table 6.3.

We can observe that generally, for both LU-IR3 and LU-GMRES-IR5, when more and

more threads are used, the speedup decreases. While on specific matrices, the difference

between 1 and 18 threads is small (e.g., approximately 5% loss on Queen_4147), for many

other matrices, it can be substantial (e.g., approximately 20% loss on thmgas). This obser-

vation originates from two combined phenomenons:

• The factorization operation has better scalability than the solve. Hence, as LU-IR3

and LU-GMRES-IR5 apply multiple solves during the refinement steps, the relative

cost of the refinement steps increases as we increase the number of threads.



6. ITERATIVE REFINEMENT FOR SPARSE APPROXIMATE FACTORIZATIONS 145

0

0.25

0.5

0.75

1

>i
tm

ax
>i

tm
ax

>i
tm

ax

N
o

rm
al

iz
ed

ti
m

e
b

y
D

M
U

M
P

S
LU-IR3

1 threads 9 threads 18 threads
E

le
ct

ro
P

h
ys

10
M ss

n
lp

kk
t8

0

Se
re

n
a

G
eo

_1
43

8

C
h

ev
ro

n
4

M
L_

G
ee

r

Tr
an

sp
o

rt

B
u

m
p

_2
91

1

D
ri

vA
er

6M

va
s_

st
o

ke
s_

1M

H
o

o
k_

14
89

Q
u

ee
n

_4
14

7

d
ie

lF
il

te
rV

2r
ea

l

Fl
an

_1
56

5

tm
in

le
t3

M

p
er

f0
09

ar

P
fl

ow
_7

42

C
u

b
e_

C
o

u
p

_d
t0

el
as

ti
ci

ty
-3

d

fe
m

_h
if

re
q

_c
ir

cu
it

lf
m

_a
u

g5
M

Lo
n

g_
C

o
u

p
_d

t0

C
ar

B
o

d
y2

5M

th
m

ga
s

0

0.25

0.5

0.75

1

N
o

rm
al

iz
ed

ti
m

e
b

y
D

M
U

M
P

S

LU-GMRES-IR5

Figure 6.6: Execution time of LU-IR3 and LU-GMRES-IR5 with u f = S and u = ur = ug =
up = D normalized by that of DMUMPS for 1, 9, and 18 threads per MPI and for the whole
set of matrices listed in Table 6.1. The forward error is equivalent to the one obtained with
DMUMPS. The number of MPI used for each matrix is given in Table 6.1.

• The single precision factorization operation is less scalable than its double precision

counterpart. Indeed, the factorization in double precision has approximately double

the number of flops and a better granularity; it can therefore achieve better scalabil-

ity. For this reason, the time cost of the single precision factorization relative to the

double one increases as we increase the number of threads.

6.4.7.2 Strong scaling. The other source of parallelism is the use of multiple MPI processes.

As our in-house implementations of the SpMV and the GMRES solver works only on the

master MPI, this parallelism only concerns the MUMPS factorization, the MUMPS solve,

and our explicit cast. The MPI parallelism in the MUMPS solver is used to exploit tree and

node parallelism (see section 2.2.3.6); therefore, the more the MPI processes are used, the

more fronts of the elimination tree are computed concurrently.



146 6.4. PERFORMANCE ANALYSIS

0.55

0.6

0.65

0.7

N
o

rm
al

iz
ed

ti
m

e
b

y
D

M
U

M
P

S

LU-IR3
LU-GMRES-IR5

2 6 12 24 48 72 96

0.5

0.55

0.6

0.65

#MPI

N
o

rm
al

iz
ed

m
em

o
ry

b
y

D
M

U
M

P
S

Figure 6.7: Execution time and memory consumption of LU-IR3 and LU-GMRES-IR5 with
u f = S and u = ur = ug = up = D normalized by that of DMUMPS with an increasing
number of MPI for ElectroPhys10M. The forward error is equivalent to the one obtained
with DMUMPS. Each MPI uses 6 threads.

In Figure 6.7, we present a strong scaling experiment on ElectroPhys10M, where we

record the execution time and memory consumption of both LU-IR3 and LU-GMRES-IR5

using an increasing number of MPI (from 2 to 96). Each MPI uses 6 threads.

In terms of time, we can observe that, as for the multithreading, when we increase the

number of MPI processes, our iterative refinement variants get less competitive compared

with DMUMPS. Indeed, LU-GMRES-IR5 goes from 60% of the DMUMPS execution time to

70%. The same reasons mentioned above can explain it: double precision factorization is

more scalable than its single precision counterpart, and the solve operation is less scalable

than the factorization.

In terms of memory, we observe that from 24 MPI, LU-GMRES-IR5 becomes as effi-

cient as LU-IR3. This situation arises because the active memory consumption increases

when we increase the MPI parallelism in MUMPS. Indeed, processing more frontal matri-

ces concurrently means that more contribution blocks will be stored concurrently. When

the active memory overhead is high enough such that the single precision factorization

peak is higher than the factors in double precision (and considering that the Krylov basis is

negligible), LU-GMRES-IR5 will consume as much memory as LU-IR3. It is a very appealing

property because, when parallelism increases, the difference of memory consumption be-

tween LU-GMRES-IR5 and LU-IR3, which is one of the main drawbacks of LU-GMRES-IR5,

is expected to fade.

6.4.7.3 Weak scaling. We now want to observe how our iterative refinement variants scale

when we increase the dimension of the problem and the number of MPI processes. We

choose the number of MPI such that the average memory consumption per MPI is approx-



6. ITERATIVE REFINEMENT FOR SPARSE APPROXIMATE FACTORIZATIONS 147

1.4E+6 2.8E+6 4.6E+6 7.0E+6 1.0E+7 1.4E+7 1.9E+7

6.0E-3

5.0E-3

4.0E-3

3.0E-3

1

3
6

12

22
28

48

n

R
at

io
so

lv
e/

fa
ct

o
ri

za
ti

o
n

Figure 6.8: Ratio between the DMUMPS solve and factorization operations for increasing
dimension of a cubic Helmholtz problem. The numbers on top of the points are the num-
bers of MPI used. Each MPI uses 18 threads. The memory consumption of DMUMPS per
MPI is approximately constant.

imately constant.

In Figure 6.8, we present the evolution of the ratio between the solve and the factor-

ization operations of DMUMPS for problems of increasing dimension. This ratio is a good

indicator of the relative weight of the refinement steps in the iterative refinement algo-

rithms. Therefore, the lower the ratio, the more negligible the refinement steps are and

the better the execution time. We expect this ratio to get lower as the dimension increases

since we know that the operational complexities of the factorization and solve operations

for sparse 3D problems are respectively O (n 2) and O (n 4/3) (see Table 2.2). Hence, as n in-

creases, the solve should be more and more negligible. It is what we observe on Figure 6.8;

indeed, between the first and the last point of the figure (i.e., n = 1.4E+6 to n = 1.9E+7),

the dimension is more than ten times larger, and the relative cost of the solve is reduced by

two.

Therefore, our variants of iterative refinement are expected to perform better in time

relative to the direct solver when the problem size increases. It is a very appealing property

of these algorithms. Naturally, the relative weight of the refinement steps is also affected by

the structure of the sparse problem. For example, for 2D problems, where the ratio between

the factorization and the solve is expected to be smaller (resp. operational complexities

are O (n 3/2) and O (n log n ), see Table 2.2), the relative weight of the refinement steps will

decrease more slowly than for 3D problems. Note that this still holds for data sparse solvers

(see Table 2.3). We also point out that it is unclear how much the dimension of the problem

affects the number of iterations. Naturally, if the number of iterations increases too much

with the dimension, it might mitigate this desirable effect.

6.5 Conclusions

In this chapter, we have evaluated the potential of mixed precision iterative refinement to

improve the solution of large sparse systems with direct methods. Compared with dense

systems, sparse ones present some challenges but also, as we have explained, some specific



148 6.5. CONCLUSIONS

features that make iterative refinement especially attractive. In particular, the fact that the

LU factors are much denser than the original matrix makes the computation of the residual

in quadruple precision arithmetic affordable and leads to potentially significant memory

savings compared with a standard direct solver. Moreover, iterative refinement can rem-

edy potential instabilities in factorization, which modern sparse solvers often introduce

by using numerical approximations and relaxed pivoting strategies. To assess these bene-

fits, we propose to combine some of the most recent variants of iterative refinement (i.e.,

LU-IR3 and LU-GMRES-IR5 reviewed previously in this manuscript) with state-of-the-art

approximate sparse factorizations employing low-rank approximations and static pivoting.

In the first instance, we derived, in Theorems 6.1 and 6.2, new bounds that take into

account numerical approximations in the factorization as well as a possibly large element

growth due to relaxed pivoting. These bounds better correspond to the typical use of sparse

solvers, and we have observed them to be in good accordance with the experimental be-

havior, at least in the case of BLR approximations, static pivoting, and their combination.

We then provided an extensive experimental study of several iterative refinement vari-

ants combined with different types of approximate factorization using the multifrontal

solver MUMPS. Our experiments demonstrate the potential of mixed precision iterative re-

finements to reduce the execution time and memory consumption of sparse direct solvers

and shed light on important features of these methods. In particular, we have shown that

LU-IR3 with a standard factorization in single precision can reduce time and memory by

up to 2× compared with a double precision direct solver. We have found LU-GMRES-IR5 to

be usually more expensive but also more robust than LU-IR3, which allows it to converge

on very ill-conditioned problems and still achieve gains in memory, and sometimes even

in time. Moreover, we have combined single precision arithmetic with BLR and static pivot-

ing and analyzed how the convergence of iterative refinement depends on their threshold

parameters. Overall, compared with the double precision direct solver, we have obtained

reductions of up to 5.6× in time and 4.4× in memory, all while preserving double preci-

sion accuracy. Moreover, we have shown that memory consumption can be even further

reduced at the expense of time by using LU-GMRES-IR5 with more aggressive approxima-

tions. Finally, we have discussed the scaling properties of our iterative refinement variants;

we observed two interesting conflicting effects: increasing the parallelism might reduce

the relative time gain while increasing the dimension might increase it. In addition, we

also remarked that increasing the parallelism reduces the memory consumption gap be-

tween LU-IR3 and LU-GMRES-IR5 to some point where, on our example, LU-GMRES-IR5

becomes as efficient as LU-IR3.

These results open up promising avenues of research as half precision arithmetic be-

comes progressively available in hardware and supported by compilers.

Most of this chapter is the object of the preprint “Combining sparse approximate fac-

torizations with mixed precision iterative refinement” (Amestoy et al. [19]).



7
Iterative refinement

with
preconditioned

GMRES

So far, we have mainly been interested in improving sparse direct solvers with
mixed precision iterative refinement algorithms. Another very popular way to
solve sparse linear systems is using iterative methods (see section 2.3), particu-
larly when the dimension of the problems is too high to be solved efficiently by
direct approaches. In this chapter, we propose a new mixed precision iterative
refinement algorithm for the GMRES iterative solver that covers most of the previ-
ous state-of-the-art mixed precision strategies for this algorithm and that we call
GMRES-based iterative refinement with arbitrary preconditioner M in six preci-
sions (M-GMRES-IR6).

The content of this chapter is structured as follows: in section 7.1, we review
most of the different mixed precision strategies used for Krylov subspace iterative
solvers. In section 7.2, we study a new version of left-preconditioned MGS-GMRES
in mixed precision. In section 7.3, we use this new version of MGS-GMRES to
derive results for M-GMRES-IR6 that we validate with numerical experiments.

7.1 State-of-the-art mixed precision strategies for GMRES
Chapters 5 and 6 specifically focus on the improvement of direct solvers through mixed pre-

cision iterative refinement algorithms. However, the use of mixed precision strategies for

the solution of the linear system (1.1) has been actively studied for several kinds of solvers:

direct (e.g., Carson and Higham [45], Haidar et al. [104], Amestoy et al. [18]), Krylov based

(e.g., Turner and Walker [206], Arioli and Duff [25], Gratton et al. [96], Carson et al. [48]), or

multigrid (e.g., Göddeke et al. [88], Oo and Vogel [173], McCormick et al. [160]). This chap-

ter focuses on improving Krylov based solvers with mixed precision, more particularly it

149



150 7.1. STATE-OF-THE-ART MIXED PRECISION STRATEGIES FOR GMRES

focuses on the GMRES solvers for the solutions of general square linear systems we covered

in section 2.3.1. The use of mixed precision in these solvers has already been the topic of

many papers. This is why, in this section, we propose to list a representative sample of them

that covers most of the different mixed precision strategies inside Krylov subspace based

solvers. We can classify the different state-of-the-art strategies based on three criteria.

The first criterion is whether the method uses a single level of iteration or multiple levels,

such as inner–outer approaches which embed two levels. These approaches are based on

using an inner solver applied with low precision inside an iterative solver applied with

higher precision. The idea is that the most computationally intensive part is concentrated

in the inner solver in low precision, and the outer solver in high precision serves to improve

the accuracy of the computed solution cheaply. The first work on the topic is from Turner

and Walker [206], who applied an outer iterative refinement in high precision combined

with an inner GMRES solver for the solution of the correction equation in a lower precision.

This specific approach is very popular and has been reused for CG and GMRES by Strzodka

and Göddeke [199], Anzt et al. [21; 22], Lindquist et al. [147; 148], Loe et al. [151; 152]. Buttari

et al. [42] proposed a strategy where the outer and inner solvers are both CG or GMRES;

we can also see this setting as a GMRES preconditioned by a lower precision GMRES (resp.

CG). To use GMRES as a preconditioner, we need to employ the flexible formulation of the

right-preconditioned GMRES (i.e., FGMRES, see section 2.3.2.1) because the application of

the inner GMRES results in a nonconstant operator M −1 from an outer iteration to another.

The second criterion is to choose or not to run some or each kernel of the iterative solver

(i.e., the orthonormalization, the SpMV, or the preconditioner) with different precisions.

Some works apply all of these kernels in the same precision, such as Turner and Walker

[206]; in this case, the mixed precision only comes from the variations between the inner

and outer levels. However, many other works rely on using different precisions for different

kernels: in the orthonormalization process (e.g., the work of Yamazaki et al. [215], Carson

et al. [48], Balabanov and Grigori [30]), in the SpMV kernel (e.g., the work of Graillat et al.

[95]), or in storing the basis (e.g., the work of Aliaga et al. [9], Agullo et al. [7]). In particular,

many studies were interested in computing, storing, and applying the preconditioner of

a preconditioned GMRES (see section 2.3.2) in various precisions. For instance, the com-

putation of the preconditioner in low precision is particularly efficient for preconditioners

based on a factorization of the matrix A. It is because, generally, the computation of the

(approximate) factors, done once before the start of the iterations, represents a costly step

in flops and memory. Of course, the LU preconditioner reviewed in section 2.3.2.2 belongs

to this category, but for instance, this strategy is also valid for ILUT (see section 2.3.2.3) or

block Jacobi (see section 2.3.2.4) which can be both based on some approximate factor-

izations of A. Actually, if the whole factors need to be computed, the factorization could

certainly be the dominant operation and, therefore, offers a large avenue to save resources

with low precision. For example, the computation and the application of the full factors in

low precision have been studied by Arioli and Duff [25], Hogg and Scott [124] for FGMRES.

The same strategy can be employed by replacing the low precision factorization with an

approximate factorization, such as static pivoting (see section 2.2.4.2) as proposed by Arioli

et al. [27]. Anzt et al. [23] used a block Jacobi preconditioner for CG where each block is



7. ITERATIVE REFINEMENT WITH PRECONDITIONED GMRES 151

stored in low precision and cast on the fly to be applied at the same precision as the other

operations of CG. In contrast to all these approaches, where the preconditioner is either

applied with low precision or with the same precision as the other operations, the opposite

strategy of applying it with extra precision has also been proposed. For instance, it is the

approach employed by LU-GMRES-IR3 developed by Carson and Higham [44; 45], which

computes the factors with low precision but applies them with high. We improved this

strategy with LU-GMRES-IR5 proposed and studied in chapters 5 and 6. In particular, we

have seen that such a strategy is more robust regarding the conditioning of the problem.

Further improvements for this specific strategy were proposed. For example, by Oktay and

Carson [172], which used a recycling variant of GMRES to reduce the number of iterations,

or by Carson and Khan [46], which employs an approximate inverse preconditioner instead

of the LU preconditioner, showing that this strategy also works for preconditioners that are

not necessarily based on a factorization of A.

Finally, the third criterion is whether the choice of precisions is static throughout all

the iterations or is allowed to change as the iterations go. It has been explored by Gratton

et al. [96], who demonstrated that it was possible to reduce the precision on the matrix–

vector products and the scalar products (i.e., steps 3 and 5 of the Arnoldi Algorithm 2.5)

as we lose orthogonality on the basis due to rounding errors (theory of inexact Krylov).

Another approach is by Oktay and Carson [171], who showed that it is possible to increase

progressively the internal precision ug and up of LU-GMRES-IR5 if the accuracy on the

solution stagnates or diverges. Hence, the method starts with low precision ug and up ; if

it converges appropriately, the method does not switch the precision; otherwise, it does,

and it repeats the process in such a way that the problem is guaranteed to be solved with

the lowest precisions possible. Our last example of strategy is by Loe et al. [151; 152], who

proposed to restart the whole GMRES from low precision to higher precision at some point

in the iterations. This strategy comes from the intuition that we can use a cheaper low

precision GMRES to produce a low precision accuracy solution, and restart in more costly

full high precision GMRES to reach high precision accuracy.

We summarize in Table 7.1 most of the previously mentioned contributions; we do not

consider mixed precision in the orthonormalization process or SpMV kernel. We classify

them by preconditioner used (LU, ILU, Jacobi, and others), by way of applying the pre-

conditioner (left- or right-preconditioning), and finally, if they are using an outer iterative

refinement process or not.

In the wide range of studies listed in Table 7.1, we can identify one critical issue: every

proposition is specialized for one kind of preconditioner, one way of applying it, and uses or

not an iterative refinement outer solver. Unfortunately, this substantial number of different

and (for most of them) seemingly unrelated approaches can be confusing and leads to the

following reasonable practical questions: how to choose one of these propositions? How

are they linked and different? Are they consistent with each other? Etc. In other words, we

lack a general theoretical framework that covers an extensive collection of preconditioners,

their different ways of application, and the use or not of outer iterative refinement.

In this chapter, we develop a framework that aims to gather most of these approaches

under the same coherent analysis from which we can compare and decide which mixed



152 7.2. LEFT-PRECONDITIONED MGS-GMRES IN MIXED PRECISION

Table 7.1: Summary of existing scientific papers using mixed precision with GMRES or CG
classified by preconditioner used and if it is combined or not with a refinement process.
We display in red the papers using left-preconditioning, in blue the papers using right-
preconditioning, and in black the papers which are not using any preconditioner.

LU ILU Jacobi Polynomial
Approximate

inverse
GMRES
/CG

None

IR

[44] [45]
[18] [19]
[171] [172]
[124]

[147] [148]
[148] [151]
[152]

[151] [152] [46]
[206] [199]
[21] [22]

No IR [25] [23] [42] [96]

precision strategy is the best for a given use case. Accordingly, the chapter is organized

into two main parts. First, we study a new preconditioned MGS-GMRES in mixed precision

that uses four independent precisions. With this new algorithm, we essentially propose to

decouple the applications of an arbitrary preconditioner M −1 and the original matrix A into

possibly two different precisions. Second, we add on top of MGS-GMRES in mixed precision

an iterative refinement process to obtain an algorithm called M-GMRES-IR6. This new

algorithm uses six independent precisions and can compute a high-accuracy solution of a

potentially ill-conditioned linear system, making it robust, efficient, and versatile. By using

an arbitrary preconditioner, an iterative refinement process, and decoupling the precision

of the preconditioned matrix–vector products, M-GMRES-IR6 covers most of the mixed

precision strategies listed in Table 7.1. In addition, it enables new mixed precision strategies

that have not been covered in previous work, and that can achieve improvements in time

and memory consumption.

With M-GMRES-IR6, we restrict ourselves to a fixed set of precisions that do not change

throughout the iterations. However, we believe that the adaptive precisions strategies pre-

sented previously can be nicely extended on top of our algorithms. Moreover, while we will

present the right-preconditioned versions of our algorithms, this chapter’s error analyses

and numerical experiments are only centered on the left-preconditioned versions. Study-

ing the right-preconditioned version is certainly of interest, but because the analysis on

the left-preconditioned case is already dense and cannot be extended straightforwardly to

the right case which needs its own analysis, we leave it for future work. Finally, we mainly

focus our analysis and experiments on the GMRES solver. However, we believe that the

framework we are proposing can be extended to some extent to other Krylov subspace

based iterative solvers.

7.2 Left-preconditioned MGS-GMRES in mixed precision
We describe in Algorithm 7.1 a left- and right-preconditioned MGS-GMRES applying its

operations in four independent precisions u f , ug , um , and ua that we refer to as left or

right MGS-GMRES in mixed-precision in this chapter. Two points should be noted. First,



7. ITERATIVE REFINEMENT WITH PRECONDITIONED GMRES 153

Algorithm 7.1 is based on the MGS orthonormalization, but this mixed precision strategy

can be adapted to other sorts of orthonormalization processes such as CGS or Householder

(see section 2.3.1.2). Second, the preconditioner M is arbitrary, meaning that Algorithm 7.1

can be specialized for any kind of preconditioner, in particular, with the ones used in the

previous mixed precision GMRES approaches listed in Table 7.1.

Algorithm 7.1 Left-preconditioned MGS-GMRES in mixed precision

Input: an n ×n matrix A and a preconditioner M , a right-hand side b , and a number of
iteration k .

Output: a computed solution to Ax = b .

1: Compute M (Optional) (u f )
2: Initialize x0

3: r0 = Ax0− b (ua )
4: s0 =M −1r0s0 =M −1r0s0 =M −1r0 (um )
5: β = ∥s0∥, v1 = s0/β , j=0 (ug )
6: for j = 1 : k do
7: z j = Av j (ua )
8: w j =M −1z jw j =M −1z jw j =M −1z j (um )
9: for l = 1 : j do

10: hl , j = v T
l w j (ug )

11: w j =w j −hl , j vl (ug )
12: end for
13: h j+1, j = ∥w j ∥ (ug )
14: v j+1 =w j /h j+1, j (ug )
15: end for
16: yk = arg miny ∥βe1−Hk y ∥ (ug )
17: xk = x0+Vk yk (ug )

1: Compute M (Optional) (u f )
2: Initialize x0

3: r0 = Ax0− b (ua )
4:

5: β = ∥r0∥, v1 = r0/β , j=0 (ug )
6: for j = 1 : k do
7: z j =M −1v jz j =M −1v jz j =M −1v j (um )
8: w j = Az j (ua )
9: for l = 1 : j do

10: hl , j = v T
l w j (ug )

11: w j =w j −hl , j vl (ug )
12: end for
13: h j+1, j = ∥w j ∥ (ug )
14: v j+1 =w j /h j+1, j (ug )
15: end for
16: yk = arg miny ∥βe1−Hk y ∥ (ug )
17: xk = x0+Zk ykxk = x0+Zk ykxk = x0+Zk yk (um )

The different precisions are defined as follows. The precision ua is used to compute the

matrix–vector products with the matrix A, the precision um is used for the applications of

the preconditioner M −1, and the precision ug is used to compute the rest of the operations.

The precision u f is the precision at which the preconditioner is computed at step 1. This

step is optional since every preconditioner does not require some precomputation before

being applied. It is particularly relevant for preconditioners based on the (approximate)

factorization of the matrix A. In this framework, the precisions u f , ug , um , and ua are fixed

for every iteration of GMRES, unlike adaptive strategies where the precisions evolve as the

iterations go, see the work by Gratton et al. [96], Loe et al. [151], and Oktay and Carson [172].

In this section, we develop a rounding error analysis of the left MGS-GMRES in mixed

precision. We first demonstrate the backward stability of this algorithm and introduce two

essential quantities ρA and ρM in section 7.2.1. By studying these quantities, we explain

why it makes sense to differentiate the precision ua and um in two independent precisions

in section 7.2.2. Finally, we assess our theoretical analysis by numerical experiments in

section 7.2.3.



154 7.2. LEFT-PRECONDITIONED MGS-GMRES IN MIXED PRECISION

7.2.1 Backward stability of left MGS-GMRES in mixed precision

To demonstrate the backward stability of left MGS-GMRES in mixed precision, we can use

Theorem 5.2 for the backward stability of MGS-GMRES with an arbitrary matrix–vector

product. To use this theorem, we need a bound on the error generated by the precondi-

tioned matrix–vector product kernel (steps 7 to 8) of Algorithm 7.1.

We suppose in the following that the left-preconditioned matrix–vector product kernel

M −1Av j is composed of a standard matrix–vector product with the matrix A in precision

ua , and the application of the preconditioner M −1 on the resulting vector in precision um .

We have

fl(M −1Av j ) = (M
−1+∆M j )(A+∆A j )v j , (7.1a)

|∆A j | ≤ γa
n |A|, |∆M j | ≤ f (n )um Em , (7.1b)

where ∆M j models a generic error on the application of the preconditioner bounded by

the precision um and a matrix Em with positive entries. Therefore, noting eA =M −1A, the

error f on the kernel satisfies

fl(M −1Av j )≈M −1Av j + f , f =M −1∆A j v j +∆M j Av j , (7.2a)

∥ f ∥2 ≤ (uaρA +umρM )∥ eA∥F ∥v j ∥2, (7.2b)

with

ρA =max
j
(ρA, j ) and ρM =max

j
(ρM , j ) (7.3)

where

uaρA, j ≡
∥M −1∆A j v j ∥2

∥ eA∥F ∥v j ∥2

and umρM , j ≡
∥∆M j Av j ∥2

∥ eA∥F ∥v j ∥2

. (7.4)

Note that we implicitly supposed that the term∆M j∆A j v j is a second order term. We will

make such implicit assumptions on second order terms at different moment of the analysis

of this chapter while acknowledging that it would require a more careful check.

From (7.2) we can apply Theorem 5.2 and straightforwardly derive a backward stability

result for left MGS-GMRES in mixed precision.

Theorem 7.1. Let (1.1) be solved by a left preconditioned MGS-GMRES using a precondi-

tioner M and applying its operations in precision ug , except the matrix–vector product with

A which is applied in precision ua and the application of the preconditioner M which is

applied in precision um . Provided that the application of A and M −1 to a vector v satisfies

fl(Av ) = (A+∆A)v, |∆A| ≤ γa
n |A|, (7.5a)

fl(M −1v ) = (M −1+∆M )v, |∆M | ≤ f (n )um Em , (7.5b)

where Em is a matrix with positive entries, and that

σmin( eA)≫max(uaρA , umρM , ug )∥ eA∥F , (7.6)



7. ITERATIVE REFINEMENT WITH PRECONDITIONED GMRES 155

then there is a step k ≤ n such that the algorithm produces a computed bxk of the left-

preconditioned system eAx = eb , with eA =M −1A and eb =M −1b , satisfying

( eA+∆ eA)bxk = eb +∆eb , (7.7a)

∥∆ eA∥F ≲ f (n , k )(uaρA +umρM +ug )∥ eA∥F , (7.7b)

∥∆eb ∥2 ≲ eγ
g
k n∥eb ∥2, (7.7c)

with

uaρA =max
j

∥M −1∆A j v j ∥2

∥ eA∥F ∥v j ∥2

and umρM =max
j

∥∆M j Av j ∥2

∥ eA∥F ∥v j ∥2

. (7.8)

The quantities ρA and ρM of Theorem 7.1 are made of the terms A,∆A j , M and∆M j ,

and can be further determined when more information is available on the preconditioner

and how it is applied.

We now check that we can recover the result of Paige et al. [176] for an unpreconditioned

MGS-GMRES in uniform precision. We choose M = I and ug = um = ua , and evaluate uaρA

and umρM . For uaρA , we have

uaρA =max
j

∥M −1∆A j v j ∥2

∥ eA∥F ∥v j ∥2

≤
∥∆A j ∥2

∥A∥2
≤ γg

n . (7.9)

As the application of the identity I does not generate any computing error,∆M j = 0 for all

j ≤ n and, so, umρM = 0. Hence, from (7.7) we recover the original result

(A+∆A j )bxk = b +∆b , ∥∆A j ∥F ≲ eγ
g
k n∥A∥F , ∥∆b ∥2 ≲ eγ

g
k n∥b ∥2. (7.10)

Note that Theorem 7.1 is valid regardless of the stopping criterion chosen as long as

the algorithm does not stop before the specific k th iteration (mentioned in the theorem).

However, in practice, it is important to note that for left-preconditioned GMRES we cannot

have costless access to the residual of the original system (1.1). Instead, we have access to

the residual of the left-preconditioned system (2.41), which can be arbitrarily smaller and

lead to a too-early stop of the algorithm if the stopping criterion is based on it.

7.2.2 Differentiating the precisions ua and um

An important conclusion of Theorem 7.1 is that the interest of setting ua ̸= um depends on

the dominance of the quantity ρA or ρM over the other. Indeed, if ρA ≈ρM we should set

ua = um , as for LU-GMRES-IR5 analyzed and used in the previous chapters. However, if for

example ρA ≫ ρM we can set um ≫ ua , which, as long as uaρA ≥ umρM , is not expected

to affect much the convergence. This section is dedicated to studying these two quantities.

7.2.2.1 On the quantity ρA, j . From (7.4) we have for all j ≤ n

uaρA, j =
∥M −1∆A j v j ∥2

∥ eA∥F ∥v j ∥2

≤ eγa
n

∥M −1∥F ∥A∥F

∥ eA∥F

, (7.11)



156 7.2. LEFT-PRECONDITIONED MGS-GMRES IN MIXED PRECISION

then

ρA, j ≤ f (n )
∥M −1∥F ∥M eA∥F

∥ eA∥F

≤ f (n )κF (M ) (7.12)

or

ρA, j ≤ f (n )
∥M −1AA−1∥F ∥A∥F

∥ eA∥F

≤ f (n )κF (A), (7.13)

and so

ρA, j ≤ f (n )min(κF (A),κF (M )). (7.14)

With the reasonable assumption that the condition number of the preconditioner is smaller

than the condition number of A, that is κ(M ) ≤ κ(A), then, for all j ≤ n we have ρA, j ≤
f (n )κF (M ). Therefore, ρA, j is at most of order κF (M ). In addition, if this bound is descrip-

tive, we can expect ρA, j to potentially increase as the condition number of the precondi-

tioner increases.

We now make the simple observation that more the preconditioner reduce the condi-

tion number of the preconditioned matrix, more its condition number is close to the one

of A. We have

κ(A) = κ(M M −1A)≤ κ(M )κ( eA), (7.15a)

κ(M ) = κ(AA−1M )≤ κ(A)κ( eA), (7.15b)

which gives
κ(A)

κ( eA)
≤ κ(M )≤ κ(A)κ( eA). (7.16)

For simplicity, we will consider that a “good” preconditioner M is a preconditioner that

brings κ( eA) close to 1. While this is not true in general since every nonincreasing GMRES

convergence curve is possible for a given spectrum of eA (see Greenbaum et al. [97]), it

is, however, a tendency that is often observed in practice. Therefore, accounting for the

previous comment onρA, j , ifκ(A) is large and the preconditioner is “good”,ρA, j is expected

to be large.

For the following, we denote the bound (7.11) on ρA, j by

ρA, j ≡ f (n )
∥M −1∥F ∥A∥F

∥ eA∥F

. (7.17)

7.2.2.2 Explicit construction of M −1. The application of a preconditioner M can take dif-

ferent forms. In this section, we suppose that M −1 is computed and formed explicitly, so

that the application of M −1 to the vectors Av j is a standard matrix–vector product. In this

case Em ≡ |M −1| in (7.1).

As for the previous bound on ρA, j , we denote the bound on ρM , j by

ρM , j ≡ f (n )
∥M −1∥F ∥Av j ∥2

∥ eA∥F ∥v j ∥F

. (7.18)



7. ITERATIVE REFINEMENT WITH PRECONDITIONED GMRES 157

In this case, we have ρM , j ≤ ρA, j for all j ≤ n , where the gap between ρA, j and ρM , j can

be quantified by the ratio ρA, j /ρM , j = f (n )∥A∥F ∥v j ∥2∥Av j ∥2. This ratio can be potentially

large in the presence of heavy cancellations in the product Av j , that is, ∥Av j ∥2≪∥A∥F ∥v j ∥2.

If we assume that ρA, j and ρM , j are sharp bounds of, respectively, ρA, j and ρM , j , then,

our conclusions on ρA, j and ρM , j apply to ρA, j and ρM , j . This assumption seems to be

reasonable if we view the error matrices ∆A j and∆M j as random perturbations that do

not carry significant cancellations (i.e., |∆A j v j | ≈ |∆A j ||v j |). In particular, we can expect

ρM , j ≤ρA, j .

7.2.2.3 Implicit construction of M −1 via LU factorization. In this section, we suppose that

M −1 is applied by an implicit LU inversion; that is, we have computed or we have access

to the LU factors of M, which are noted L and U , and we apply M −1 by applying the two

consecutive triangular solves with L and U in precision um . For instance, this kind of pre-

conditioner application can be used with block Jacobi or ILU preconditioners. Thus, the

preconditioned matrix–vector product kernel verifies

fl(M −1Av j ) = (U +∆U )−1(L +∆L )−1(A+∆A j )v j , (7.19a)

|∆U | ≤ γm
n |U |, |∆L | ≤ γm

n |L |, (7.19b)

where we identify

∆M j = (U +∆U )−1(L +∆L )−1−M −1 (7.20a)

≈ (U −1−U −1∆U U −1)(L−1− L−1∆L L−1)−M −1 (7.20b)

≈−U −1∆U M −1−M −1∆L L−1 (7.20c)

by using the formulation of the inverse of a sum of matrices by Henderson and Searle [105].
Next, to bound ρM , j , we form

∆M j Av j ≈−U −1∆Uj M −1Av j −M −1∆L j L−1Av j (7.21)

which can be bounded such that

∥∆M j Av j ∥2 ≲ γm
n

�

∥|U −1||U ||M −1Av j |∥2+ ∥|M −1||L ||L−1Av j |∥2

�

(7.22a)

≤ γm
n

�

cond(U )∥M −1Av j ∥2 (7.22b)

+ cond(L )min(∥U −1∥F ∥L−1Av j ∥2,∥M −1∥F ∥Av j ∥2)
�

. (7.22c)

We know from [114, lem 8.6] that cond(L ) and cond(U ) are of modest size when partial

pivoting is used, in addition ∥M −1Av j ∥2 ≤min(∥U −1∥F ∥L−1Av j ∥2,∥M −1∥F ∥Av j ∥2), so if we

gather all the constants under the term f (n )we obtain

ρM , j ≲ρM , j ≡ f (n )
min(∥U −1∥F ∥L−1Av j ∥2,∥M −1∥F ∥Av j ∥2)

∥ eA∥F ∥v j ∥2

. (7.23)



158 7.2. LEFT-PRECONDITIONED MGS-GMRES IN MIXED PRECISION

The ratio becomes, for all j ≤ n ,

ρA, j /ρM , j = f (n )
∥M −1∥F ∥A∥F ∥v j ∥2

min(∥U −1∥F ∥L−1Av j ∥2,∥M −1∥F ∥Av j ∥2)
. (7.24)

Therefore, if there are heavy cancellations in the products Av j or L−1Av j , that is,

∥M −1∥F ∥Av j ∥2≪∥M −1∥F ∥A∥F ∥v j ∥2 or ∥U −1∥F ∥L−1Av j ∥2≪∥M −1∥F ∥A∥F ∥v j ∥2, (7.25)

the ratio can be large.

Supposing as previously that the products with∆L j and∆Uj do not carry significant

cancellations, we can expect the bound (7.23) to be sharp. It tends to assess that it is very

likely to observe ρM , j ≤ρA, j , where possibly ρM , j ≪ρA, j if the ratio is large. It is the same

conclusion as the previous section 7.2.2.2 about the explicit construction of M −1.

7.2.2.4 Discussion onρA, j andρM , j . We emphasize the two significant observations of the

previous analysis. First,ρA is potentially large in cases where A is ill-conditioned and where

the preconditioner reduces κ( eA) close to 1, that is, when κ(M ) is large too. In such cases, it

is interesting to use high precision for ua to compensate for the generated error. Second,

we have shown that the ratio between the bounds ρA, j and ρM , j can be potentially large,

specifically when there are heavy cancellations in the products Av j or in the triangular

solve L−1Av j . Therefore, assuming these bounds are reasonably descriptive of the actual

behavior of the effective quantities ρA, j and ρM , j , we may expect the ratio ρA, j /ρM , j to

also be potentially large. In this case, ρM ≪ ρA and it becomes meaningful (as defined

in section 2.1.3.3) to set um ≫ ua . Note that we have not shown that these bounds are

descriptive, so this last conclusion constitutes more an intuition than a strong assessment.

Conversely, as we showed that it is very unlikely to have ρA ≤ ρM , we know that it is not

meaningful to set um ≪ ua . We now turn to numerical experiments to assess to what extent

these theoretical conclusions are met in practice.

7.2.3 Numerical experiments

We are interested in validating through numerical experiments the possibility to set um ≫
ua , which has been the main conclusion of the previous section. We use a generator to

create dense matrices A and their associated preconditioners M , where both condition

numbersκ(A) andκ(M ) can be manually set. We emphasize that this generator is not meant

to be of any practical relevance but is rather used to fully control the conditionings of A and

M . We combine it with a Julia implementation of the left-preconditioned MGS-GMRES to

compare the quantities ρA, j and ρM , j over the first iterations of GMRES.

7.2.3.1 Preconditioner generator. For the numerical validation of our rounding error anal-

ysis, we use the following random generator of preconditioned linear systems M −1Ax =
M −1b . Given a logarithmic distribution of the eigenvalues {1= λ1 >λ2 > · · ·>λn > 0}, we



7. ITERATIVE REFINEMENT WITH PRECONDITIONED GMRES 159

build A with a target condition number κ(A) such that

A =Q T diag(λ1,λ2, . . . ,λn )Q , (7.26)

where Q ∈ Rn×n is a randomly generated orthogonal matrix. Doing so, we have κ(A) =
1/λn . Then we build its preconditioner M with a target condition number κ(M )≤ κ(A) by

truncating the previous distribution of eigenvalues at the first i such that 1/λi > κ(M ), it

provides

M =Q T diag(λ1, . . . ,λi−1, . . . ,λi−1)Q . (7.27)

In exact arithmetic, this setup guarantees that

κ( eA) = κ(M −1A) =
λi−1

λn
≈
κ(A)
κ(M )

. (7.28)

Therefore, with this generator a preconditioner M reducing κ( eA) close to 1 satisfies κ(M )≈
κ(A) and, conversely, a preconditioner providingκ( eA)≫ 1 satisfiesκ(M )≪ κ(A). We assume

that a “good” preconditioner reducesκ( eA), even though it is not necessary true as explained

in section 7.2.2.1. With this assumption, M becomes a better preconditioner as κ(M ) gets

closer to κ(A). In our experiments, both A and M are generated in double precision and

then converted to the arithmetic required by the algorithm.

7.2.3.2 Comparison of ρA, j and ρM , j . We plot in Figures 7.1 and 7.2 the evolution of ρA, j

and ρM , j over the first 15 iterations of MGS-GMRES with, respectively, preconditioners

M with increasing κ(M ) and A with fixed κ(A) = 1010, and preconditioners M with fixed

κ(M ) = 102 and A with increasing κ(A). To generate the different matrices A and M of

dimension 50×50, we use the previous random dense generator presented in section 7.2.3.1.

For these experiments, we are not interested in the accuracy of the solution of the GMRES

throughout the iterations, but we only focus on the values of ρA, j and ρM , j . We are also

not interested in studying different combinations of ug , um , and ua ; these precisions are

all fixed to double precision, which is the precision at which A and M are generated.

We now comment on Figure 7.1. In this figure, the quality of the preconditioner M

increases with κ(M ) until it reaches κ(M ) = κ(A). For κ(M ) = 102, we can observe that, over

the iterations,ρA, j is just slightly higher thanρM , j (the ratioρA, j /ρM , j is about 101). In this

case, we are not in a configuration where ρA, j ≫ρM , j , and so where we can set um ≫ ua .

However, we remark that when we increase κ(M ), this ratio is increasing; that is, the gap

between ρA, j and ρM , j is widening. For example, for κ(M ) = 104 the ratio is approximately

102, for κ(M ) = 106 it is 104, for κ(M ) = 108 it is 106, and for κ(M ) = 1010 it is 108. Therefore,

when κ(M ) gets larger, we have more room to set um ≫ ua . This experimental observation

validates our theoretical conclusion of section 7.2.2.4 stating thatρA, j tends to increase with

κ(M ), and that ρM , j can be far smaller than ρA, j . More precisely, with these experiments,

we observe that the ratio ρA, j /ρM , j is getting larger for high κ(A) and small κ( eA), that is,

when κ(M ) is high. This configuration is favorable for setting um ≪ ua , and it is likely that

this observation stays true for other, more practical, classes of preconditioners.



160 7.2. LEFT-PRECONDITIONED MGS-GMRES IN MIXED PRECISION

101

105

109
κ(M ) = 102

ρA, j
ρM , j

101

105

109
κ(M ) = 104

101

105

109
κ(M ) = 106

101

105

109
κ(M ) = 108

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

101

105

109

#it

κ(M ) = 1010

Figure 7.1: Evolution ofρA andρM over the 15 first iterations of GMRES for preconditioners
M of a matrix A ∈R50×50 with various condition numbers. We fix κ(A) = 1010.



7. ITERATIVE REFINEMENT WITH PRECONDITIONED GMRES 161

101

105

109
κ(A) = 102

ρA, j
ρM , j

101

105

109
κ(A) = 104

101

105

109
κ(A) = 106

101

105

109
κ(A) = 108

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

101

105

109

#it

κ(A) = 1010

Figure 7.2: Evolution of ρA and ρM over the 15 first iterations of GMRES for matrices A ∈
R50×50 with various condition numbers. We fix κ(M ) = 102.



162 7.3. M-GMRES-IR6

Next, we comment on Figure 7.2. On this figure, κ(M ) is fixed and κ(A) increases. In-

terestingly, from κ(A) = 102 to κ(A) = 1010, the ratio between ρA, j and ρM , j seems to stay

constant at about 101, and does not evolve when κ(A) is increasing. This observation also

comes to strengthen our conclusions of section 7.2.2.4. Specifically, it confirms that the

quantities uaρA and umρM of (7.7) are driven by κ(M ) and not κ(A). It is an interesting

property because when κ(M ) is small, both ρA, j and ρM , j are small, no matter the value of

κ(A). In such cases, having um and ua in higher precision than ug is meaningless, and we

should set um = ua = ug .

7.3 M-GMRES-IR6
Algorithm 7.2 describes an iterative refinement variant based on the preconditioned MGS-

GMRES in mixed precision studied in section 7.2, and applying its operations in six inde-

pendent precisions u f , u , ur , ug , um , and ua that we call left or right GMRES-based iterative

refinement with arbitrary preconditioner M in six precisions (M-GMRES-IR6). The preci-

sion u and ur are the precisions for, respectively, the computation of the update and the

residual; these operations are equivalent to step 3 and step 5 of the generalized iterative

refinement described by Algorithm 4.1. The last four precisions u f , ug , um , and ua are

the precisions used by the inner preconditioned MGS-GMRES in mixed precision studied

previously, and are the same as in Algorithm 7.1. Note that in Algorithm 7.2, the iterative

refinement process is written in the form of a restarting process; we explain the equivalence

between the two in more detail in the coming section 7.3.1.

Written as such, left and right M-GMRES-IR6 cover almost all the algorithms proposed

by the papers listed in Table 7.1; the only exceptions are the strategies where the precision

varies adaptively during the execution. However, even for these strategies, we believe that

M-GMRES-IR6 can be easily extended to be used with them. In addition, it can achieve new

meaningful combinations of precisions that have never been covered before, particularly

variants where ug ≥ um ≫ ua . These new kinds of variants, applying the preconditioner in

lower precision than the matrix A, can be attractive in terms of performance if the appli-

cation of the matrix A is negligible compared with the application of the preconditioner.

This configuration is actually relatively standard for sparse systems. For example, solving

a sparse problem with an ILU preconditioner can lead to computing approximate factors

with a higher number of nonzeros than A because of the fill-in (see section 2.2.3.2); the

solves are therefore expected to be more costly than the matrix–vector products with A.

There are two major differences between M-GMRES-IR6 and LU-GMRES-IR5 previ-

ously described and studied in chapter 5. First, the preconditioner is not necessarily an LU

preconditioner but is rather arbitrary, such that we can derive results for a wide class of

preconditioners rather than for one specialized preconditioner. Second, we split the appli-

cation of the preconditioned matrix–vector product in two precisions ua and um , where

formerly it was fully applied in precision up .

This section is interested in studying left M-GMRES-IR6 and, specifically, in deriving

convergence conditions on this algorithm’s forward and backward errors by using the pre-

vious error analysis on left MGS-GMRES in mixed precision. To do so, we first explain in



7. ITERATIVE REFINEMENT WITH PRECONDITIONED GMRES 163

Algorithm 7.2 M-GMRES-IR6

Input: an n ×n matrix A, a preconditioner M , and right-hand side b .
Output: a computed solution to Ax = b .

1: Compute M (Optional) (u f )
2: Initialize x0

3: repeat
4: ri = Axi − b (ur )
5: si =M −1risi =M −1risi =M −1ri (um )
6: β = ∥si ∥, v1 = si /β , j=0 (ug )
7: repeat
8: j = j +1
9: z j = Av j (ua )

10: w j =M −1z jw j =M −1z jw j =M −1z j (um )
11: for l = 1 : j do
12: hl , j = v T

l w j (ug )
13: w j =w j −hl , j vl (ug )
14: end for
15: h j+1, j = ∥w j ∥ (ug )
16: v j+1 =w j /h j+1, j (ug )
17: yj = arg miny ∥βe1−H j y ∥ (ug )
18: until ∥βe1−H j yj ∥ ≤τg

19: xi+1 = xi +Vj yj (u )
20: i = i +1
21: until convergence

1: Compute M (Optional) (u f )
2: Initialize x0

3: repeat
4: ri = Axi − b (ur )
5:

6: β = ∥ri ∥, v1 = ri /β , j=0 (ug )
7: repeat
8: j = j +1
9: z j =M −1v jz j =M −1v jz j =M −1v j (um )

10: w j = Az j (ua )
11: for l = 1 : j do
12: hl , j = v T

l w j (ug )
13: w j =w j −hl , j vl (ug )
14: end for
15: h j+1, j = ∥w j ∥ (ug )
16: v j+1 =w j /h j+1, j (ug )
17: yj = arg miny ∥βe1−H j y ∥ (ug )
18: until ∥βe1−H j yj ∥ ≤τg

19: xi+1 = xi +Z j yjxi+1 = xi +Z j yjxi+1 = xi +Z j yj (u )
20: i = i +1
21: until convergence

section 7.3.1 why restarted GMRES is a form of iterative refinement. It allows us to use the

generalized iterative refinement results of section 4.2 to carry out the rounding error anal-

ysis of left M-GMRES-IR6 in section 7.3.2. Finally, we validate our theoretical result with

randomly generated and real-life matrices, and evaluate the potential of new combinations

of precisions in section 7.3.3.

7.3.1 Equivalence between restarted GMRES and iterative refinement

M-GMRES-IR6, as described by Algorithm 7.2, is a form of restarted GMRES. However, it

can also be interpreted as an iterative refinement algorithm based on the preconditioned

MGS-GMRES in mixed precision covered in section 7.2. This statement is essential for the

following error analysis since it means that major stability results of iterative refinement

can apply to M-GMRES-IR6, particularly Theorems 4.1 and 4.2.

We now explain in which case the equivalence is true. The difference between a restarted

GMRES and iterative refinement combined with a non-restarted GMRES is that, in the first

case, the GMRES solver solves Ax = b , and in the second, it solves the correction equation

Adi = ri . Presented differently, the restarted GMRES builds the next iterate of the solution

xi+1 in the subspaces xi +K j (A, b −Axi )with j ≤ n and where the notation K j (A, b −Axi )
denotes a Krylov subspace (see section 2.3.1). The GMRES-IR builds the next correction



164 7.3. M-GMRES-IR6

di in the subspaces di ,0 +K j (A, (b − Axi )− Adi ,0), where di ,0 is a first guess on di , and so

the next iterate xi+1 is in xi +di ,0+K j (A, (b −Axi )−Adi ,0). Therefore, restarted GMRES is

equivalent to a GMRES-IR where the first guess of the solution di ,0 is always initialized to

the zero vector.

Hence, M-GMRES-IR6 can be viewed as both, a restarted GMRES using six precisions

as described in Algorithm 7.2, or as an iterative refinement based on the preconditioned

MGS-GMRES in mixed precision represented by Algorithm 7.1.

As we have explained in chapter 5, M-GMRES-IR6 is not backward stable if GMRES

restarts after a fixed maximum number of iterations, as it is often done in practice. This is

why we do not assume such a restarting criterion in the following, and GMRES is allowed

to iterate on the full dimension of the problem. We discussed in section 5.4 a stopping

criterion τg for LU-GMRES-IR5 on which we can derive a backward stability result. It is

easily extendable to M-GMRES-IR6; though, we do not consider it in the following analysis

but use it in our numerical experiments.

7.3.2 Error analysis and convergence conditions

In the following, we carry out the error analysis of M-GMRES-IR6. The structure is simi-

lar to the analysis of LU-GMRES-IR5 in section 5.2, our aim is to rewrite (4.9) and (4.16)

to apply Theorems 4.1 and 4.2 to obtain specialized conditions for the convergence of

the forward and backward errors of M-GMRES-IR6 to their respective limiting accura-

cies (4.10) and (4.17). To achieve that, we proceed like in section 5.2.2: we bound the error

in bsi = fl(M −1
bri ), then we use our analysis of left MGS-GMRES in mixed precision made in

section 7.2 to derive bounds on the forward and backward errors of the solution of eAdi = si ,

finally we identify the terms us , Ei , c1 and c2 from (4.9) and (4.16) and we conclude on the

convergence conditions.

We first evaluate the error on computing the preconditioned right-hand side si =M −1
bri .

Using the assumption (7.1) we have

bsi = fl(M −1
bri ) = (M

−1+∆Ms )bri , |∆Ms | ≤ f (n )um Em , (7.29)

giving

∥si − bsi ∥∞ = ∥∆Ms bri ∥∞ ≤ ∥∆Ms M ∥∞∥si ∥∞. (7.30)

We know from Theorem 7.1 that the computed solution bdi of eAdi = bsi by MGS-GMRES in

three precisions satisfies

( eA+∆ eA) bdi = bsi +∆bsi , (7.31a)

∥∆ eA∥F ≲ f (n , k )(uaρA +umρM +ug )∥ eA∥F , (7.31b)

∥∆bsi ∥2 ≲ eγ
g
k n∥bsi ∥2 ≲ n 1/2
eγ

g
k n∥si ∥∞. (7.31c)

Rewriting (7.31a) as

si − eA bdi =∆ eA bdi − (bsi − si )−∆bsi (7.32)

and using (7.31b), (7.30), and (7.31c) to bound the three terms on the right-hand side, we



7. ITERATIVE REFINEMENT WITH PRECONDITIONED GMRES 165

obtain

∥si − eA bdi ∥∞ ≤ ∥∆ eA∥∞∥ bdi ∥∞+ ∥bsi − si ∥∞+ ∥∆bsi ∥∞ (7.33a)

≲ f (n , k )
�

(uaρA +umρM +ug )∥ eA∥∞∥ bdi ∥∞ (7.33b)

+ ∥∆Ms M ∥∞∥si ∥∞+ug ∥si ∥∞
�

(7.33c)

≤ f (n , k )(uaρ
′
A +umρ

′
M +ug )(∥ eA∥∞∥ bdi ∥∞+ ∥si ∥∞), (7.33d)

where with (7.3), by switching from the 2-norm to the∞-norm, and by taking into account

the term ∥∆M j M ∥∞, we have

uaρ
′
A ≡max

j

∥M −1∆A j v j ∥∞
∥ eA∥∞∥v j ∥∞

and umρ
′
M ≡max

j

∥∆M j Av j ∥∞
∥ eA∥∞∥v j ∥∞

+ ∥∆Ms M ∥∞. (7.34)

Therefore, the normwise relative backward error of the preconditioned system eA bdi = si is

bounded by
∥si − eA bdi ∥∞

∥ eA∥∞∥ bdi ∥∞+ ∥si ∥∞
≲ f (n , k )(uaρ

′
A +umρ

′
M +ug ) (7.35)

and the forward error of the computed bdi satisfies

∥di − bdi ∥∞
∥di ∥∞

≲ f (n , k )(uaρ
′
A +umρ

′
M +ug )κ∞( eA). (7.36)

By rewriting (7.32) as

bri −A bdi =M (∆ eA bdi − (bsi − si )−∆bsi ), (7.37)

and reusing the reasoning of (7.33a) we obtain

∥bri −A bdi ∥∞ ≲ f (n , k )(uaρ
′
A +umρ

′
M +ug )(∥M ∥∞∥ eA∥∞∥ bdi ∥∞+ ∥M ∥∞∥si ∥∞) (7.38a)

≤ f (n , k )(uaρ
′
A +umρ

′
M +ug )(

∥M ∥∞∥ eA∥∞
∥A∥∞

∥A∥∞∥ bdi ∥∞ (7.38b)

+κ∞(M )∥bri ∥∞), (7.38c)

which gives a bound on the normwise backward error of the original system A bdi = bri .

From (7.36) and (7.38) we can identify

us ≡ (uaρ
′
A +umρ

′
M +ug ), ∥Ei ∥∞ ≡ f (n , k )κ∞( eA), (7.39a)

c1 ≡ f (n , k )
∥M ∥∞∥ eA∥∞
∥A∥∞

, c2 ≡ f (n , k )κ∞(M ), (7.39b)

and by using Theorems 4.1 and 4.2 we obtain the following theorem.

Theorem 7.2 (Convergence of M-GMRES-IR6). Let (1.1) be solved by M-GMRES-IR6 (Algo-

rithm 7.2). If ug ≥ u, and that the application of A and M −1 to a vector v satisfies

fl(Av ) = (A+∆A)v, |∆A| ≤ γa
n |A|, (7.40a)



166 7.3. M-GMRES-IR6

fl(M −1v ) = (M −1+∆M )v, |∆M | ≤ f (n )um Em , (7.40b)

where Em is a matrix with positive entries, then the forward and backward errors will reach

their respective limiting accuracies

p ur cond(A, x ) +u (forward) and p ur +u (backward), (7.41)

provided that

(uaρ
′
A +umρ

′
M +ug )κ∞( eA)≪ 1 (forward) (7.42)

and

(uaρ
′
A +umρ

′
M +ug )(

∥M ∥∞∥ eA∥∞
∥A∥∞

κ(A) +κ(M ))≪ 1 (backward), (7.43)

where

uaρ
′
A =max

j

∥M −1∆A j v j ∥∞
∥ eA∥∞∥v j ∥∞

and umρ
′
M =max

j

∥∆M j Av j ∥∞
∥ eA∥∞∥v j ∥∞

+ ∥∆Ms M ∥∞. (7.44)

In order to assess the consistency of our new analysis, we demonstrate that we can

recover the forward error convergence condition (5.2) of LU-GMRES-IR5 in Theorem 5.1

with the convergence condition (7.42) of M-GMRES-IR6. We suppose that ua = um = up

and that M = bLÒU where bL and ÒU are the computed LU factors of A in precision u f . We first

evaluate the term ρ′A , we have

upρ
′
A ≤
∥M −1∆A j ∥∞
∥ eA∥∞

=
∥M −1AA−1∆A j ∥∞

∥ eA∥∞
≤ ∥A−1∆A j ∥∞ ≤ γp

nκ∞(A). (7.45)

We now evaluate the termρ′M , replacing∆M j as in (7.20), using Theorem 2.2, and dropping

second order terms give

upρ
′
M ≤

∥∆M j A∥∞
∥ eA∥∞

+ ∥∆Ms M ∥∞ ≤
∥∆M j M M −1A∥∞

∥ eA∥∞
+ ∥∆Ms M ∥∞ (7.46)

≤ ∥∆M j M ∥∞+ ∥∆Ms M ∥∞ ≲ 2∥ÒU −1∆U ∥∞+2∥ÒU −1
bL−1∆LÒU ∥∞ (7.47)

≲ f (n )upκ∞(A). (7.48)

Boundingκ∞( eA) in (7.42) with (5.35) provides the forward error convergence condition (5.2)

of LU-GMRES-IR5.

Similarly, we show that we can recover the backward error convergence condition (5.3)

of LU-GMRES-IR5 with (7.43). We have already worked on the terms upρ
′
M and upρ

′
A ,

so we only need to express κ∞(M ) and ∥M ∥∞∥ eA∥∞/∥A∥∞. First, using Theorem 2.2 and

dropping second order terms provides

κ∞(M ) = ∥bLÒU ∥∞∥ÒU −1
bL−1∥∞ ≈ ∥A∥∞∥A−1∥∞ = κ(A), (7.49)



7. ITERATIVE REFINEMENT WITH PRECONDITIONED GMRES 167

and
∥M ∥∞∥ eA∥∞
∥A∥∞

≈
∥A∥∞∥ eA∥∞
∥A∥∞

= ∥ eA∥∞. (7.50)

Hence, we can recover the backward error convergence condition (5.38) of LU-GMRES-IR5

from (7.43).

We now comment on the new forward error convergence condition (7.42) of M-GMRES-

IR6. The two significant differences with the previous forward error convergence condi-

tion (5.2) derived for LU-GMRES-IR5 in chapter 5 are:

• The term upκ(A) becomes uaρ
′
A+umρ

′
M because, first, the preconditioner is applied

in two independent precisions um and ua instead of being fully applied in precision

up and, second, without information on the preconditioner um and ua are multiplied

by the quantities ρ′A and ρ′M instead of κ(A).

• The term 1+κ(A)2u 2
f becomesκ( eA)becauseκ( eA) cannot be simplified without further

information on the preconditioner.

The analysis of the meaningful combinations of LU-GMRES-IR5 in section 5.3 is naturally

inherited to the six precisions u f , u , ur , ug , um , and ua . In particular, from condition (7.42)

we require ua , um ≤ ug . In addition, with the reasonable assumption made in section 7.2.2,

we have ρM ≤ ρA , so we require um ≥ ua . Note that the precision u f does not directly

appear in the condition (7.42) unlike the condition (5.2) for LU-GMRES-IR5. This preci-

sion is hidden in the term κ( eA) because it only affects the quality of the preconditioned

matrix and does not play a role in the rounding errors generated by the computation of the

preconditioned matrix–vector product.

Applying Theorem 7.2 for M = I provides a backward stability result for an unprecon-

ditioned restarted GMRES. Revisiting bound (7.9) directly gives uaρA ≤ eγa
n and, as dis-

cussed in section 7.2.1, we have umρM = 0. Replacing these quantities accordingly in the

bounds (7.42) and (7.43) shows that having ua < ug is not meaningful. Then, ua = ug , and

the convergence conditions for both forward and backward errors become ugκ(A) ≪ 1.

Therefore, as long as the matrix A is nonsingular relative to the precision ug , Theorem 7.2

ensures that the forward and backward errors of the solution will converge to their respec-

tive limiting accuracies p ur cond(A, x ) +u and p ur +u .

Note that the analysis of this chapter, and also the previous analyses of chapters 5 and 6,

do not consider a phenomenon that possibly has a noticeable effect on the convergence

of our different algorithms: for a given matrix A, if we note Am = flm (A)which is A cast into

a lower precision um , then possibly κ(Am ) ̸= κ(A). We call this phenomenon “regulariza-

tion” and, in practice, we often observe that κ(Am ) satisfies min(κ(A), u−1
m )≤ κ(Am )≤ κ(A).

With M-GMRES-IR6, the matrices A and M are applied respectively in precision ua and

um , therefore, if the original precisions of these matrices are higher, the condition numbers

of the resulting cast matrices can be lowered and it would affect the convergence condi-

tions (7.42) and (7.43).



168 7.3. M-GMRES-IR6

7.3.3 Numerical experiments
In the following numerical experiments, we are aiming at both validating the convergence

condition on the forward error (7.42) of Theorem 7.2 and evaluating the potential of ap-

plying the preconditioner in a lower precision than the matrix–vector product with A (i.e.,

ug ≥ um ≫ ua ) on real-life problems from the SuiteSparse collection (Davis and Hu [55]).

This combination of precisions has not been explored in the literature so far and can be

of interest, particularly when the application of the preconditioner is more costly than the

application of A. To perform these experiments, we implemented Algorithm 7.2 in Julia.

To refer to a specific arithmetic, we will use the symbols B, H, S, D, and Q listed in

Table 2.1. In addition, throughout this section, each variant of M-GMRES-IR6 will be pre-

sented in the form of a triplet (ug ,um ,ua ), so B S D means ug = B, um = S, and ua = D.

7.3.3.1 Random dense matrices. We first use random dense matrices to assess the validity

of the convergence condition (7.42). Mainly, we want to observe the impact of the choice of

precisions ug , um , and ua on the convergence of M-GMRES-IR6 according to the properties

of the problemρ′A ,ρ′M andκ( eA). Unfortunately, it is difficult to generate problems for given

ρ′A andρ′M ; this is why we rather use the dense matrix generator described in section 7.2.3.1

that randomly generates A and a preconditioner M in double precision with given κ(A)
and κ(M ). With this class of matrices and preconditioners, we know that the generated A

and M in double precision satisfies κ( eA) = κ(A)/κ(M ) and that the ratio ρ′A/ρ
′
M is tightly

related to the quantity κ(A) and κ(M ), that is, the larger is κ(A) and the closer is κ(M ) to

κ(A), the larger ρ′A/ρ
′
M can be (see discussion in section 7.2.2 and numerical experiments

in section 7.2.2.4). Throughout these experiments, we fix the precisions u = D and ur = Q to

guarantee that the limiting accuracy of the forward error does not depend on the condition

number cond(A, x ) (see the limiting accuracy (7.41) of M-GMRES-IR6). We only focus on

the precisions ug , um , and ua , and we will not attempt to study the effect of precision u f .

We take κ(A) = 10c and κ(M ) = 10c , for c = 0: 16 and, for each couple (κ(A), κ(M )), we

generate 100 random 50×50 matrices A and M of corresponding condition numbers with

the generator described in section 7.2.3.1. Then, we run M-GMRES-IR6 for five different

values of τg (10−10, 10−8, 10−6, 10−4, and 10−2) on the 100 generated A and M and we keep

for each of them the best number of cumulated GMRES iterations to achieve a forward

error ∥x − x̂∥2/∥x∥2 ≤ 1×10−10.

Figure 7.3 displays for each couple (κ(A),κ(M )) the average number of iterations over

the 100 randomly generated matrices. Each couple is represented by a tile with a spe-

cific color tone; the lighter the color, the higher the number of iterations. There are nine

heatmaps associated with nine combinations of precisions ug , um , and ua . A blank tile is a

couple (κ(A),κ(M )) for which M-GMRES-IR6 does not achieve the expected forward error.

Note that the upper triangular parts of the plots are always blank because we do not allow

κ(M )>κ(A). For instance, with variant B B B, we observe that the convergence is limited to

κ(A),κ(M ) ≤ 103 because the tiles corresponding to κ(A) > 103 are blank. In addition, we

observe that the color tone is darker near the diagonal (i.e., κ(A) ≈ κ(M )) and gets lighter

below, meaning that we do fewer iterations when κ(A) ≈ κ(M ); for example, see the tile

(κ(A) = 102,κ(M ) = 102) compared with the tile (κ(A) = 102,κ(M ) = 100).



7. ITERATIVE REFINEMENT WITH PRECONDITIONED GMRES 169

100

104

108

1012

1016

κ
(M
)

B B B B B S

1 101 102 103

#it

B S S

100

104

108

1012

1016

κ
(M
)

S S S S S D S D D

100 104 108 1012 1016
100

104

108

1012

1016

κ(A)

κ
(M
)

D D D

100 104 108 1012 1016

κ(A)

D D Q

100 104 108 1012 1016

κ(A)

D Q Q

Figure 7.3: Average number of iterations in M-GMRES-IR6 according to κ(A) and κ(M )
for different combinations of precisions ug , um , and ua . The iterations are stopped when
we converged to ∥x − x̂∥2/∥x∥2 ≤ 1× 10−10. The preconditioner is built as described in
section 7.2.3.1. We fix u = D and ur = Q.



170 7.3. M-GMRES-IR6

We first focus on the first row of Figure 7.3, that is, variants B B B, B B S, and B S S:

• Switching from B B B to B S S - Compared with B B B, B S S is a combination where ua =
um ≪ ug ; we observe that switching to this configuration allows converging on more

tiles. These additional tiles verify κ(A),κ(M )≤ 106 and are located near the diagonal,

that is, κ(A)≈ κ(M ). We can explain this effect with the convergence condition (7.42)

of M-GMRES-IR6. Because the term κ( eA) = κ(A)/κ(M ) is kept relatively small and

constant near the diagonal, and the term uaρ
′
A+umρ

′
M , which is dominant compared

with the term ug for variant B B B, is reduced with variant B S S, variant B S S achieves

better convergence conditions than B B B near the diagonal. Far from the diagonal,

B S S does not converge because κ( eA) grows too high due to the difference between

κ(A) and κ(M ).

• Switching from B B B to B B S - A major observation of this section is that B B S, which

is a combination where ua ≪ um = ug , is also converging on more tiles than variant

B B B; this is even more noticeable from variant S S S to variant S S D. These additional

tiles are located near the diagonal. This effect can also be explained by the conver-

gence condition (7.42) of M-GMRES-IR6. In addition of the previous argument stat-

ing that the term uaρ
′
A + umρ

′
M is dominant compared with the term ug near the

diagonal, we demonstrated in sections 7.2.2 and 7.2.3 that the term uaρ
′
A should

be dominant over the term umρ
′
M when κ(A)≈ κ(M )≫ 1. Therefore, increasing the

precision ua only also improves the convergence condition near the diagonal.

• Switching from B B S to B S S - As B S S converges on more tiles than B B S, we can

conclude that increasing the precision um also positively affects the convergence.

We can explain such a result from the convergence condition (7.42). Indeed, when

ua ≪ um = ug , we expect the term umρMκ( eA) to be dominant; consequently, in-

creasing the precision um should reduce this term and improve the convergence

condition.

Variant B B S presents experimental convergence conditions that are better than vari-

ant B B B but worse than variant B S S. For this reason, B B S can be seen as a trade-off

between these two variants.

The same behavior can be observed for the group of variants (S S S, S S D, S D D) on the

second row. On the third row, for the group (D D D, D D Q, D Q Q), variant D D D already con-

verges on all the possible tiles. However, switching from D D D to D D Q and from D D Q to

D Q Q further reduces the number of iterations on tiles where we were already able to con-

verge.

Finally, we comment on what happens when we switch from variant B S S to S S S. While

S S S does not converge on much higher κ(A) than B S S, we observe, however, that we can

converge on the formerly blank tiles of the subdiagonal part. On the subdiagonal part,

we know from our previous discussion in sections 7.2.2.4 and 7.2.3 that the terms ρ′A and

ρ′M are smaller because κ(M ) is smaller. Consequently, the convergence condition (7.42) is

expected to be dominated by the term ugκ( eA). This is why increasing ug allows convergence

on the subdiagonal tiles.



7. ITERATIVE REFINEMENT WITH PRECONDITIONED GMRES 171

100 104 108 1012 1016
100

104

108

1012

1016

κ(A)

κ
(M
)

S S S

100 104 108 1012 1016

κ(A)

S D S

1 101 102 103

#it

100 104 108 1012 1016

κ(A)

D S S

Figure 7.4: Supplement for Figure 7.3. Average number of iterations in M-GMRES-IR6
according to κ(A) and κ(M ) for S S S, S D S, and D S S.

Figure 7.4 compares variants S D S and D S S with variant S S S. Both S D S and D S S use

higher precisions but do not improve the convergence compared with S S S; that is, they are

not converging on more tiles, and they do not reduce the number of iterations noticeably.

This observation is not surprising since we concluded in section 7.3.2 that these variants

are not theoretically meaningful. In the case of S D S, we have already explained that um ≪
ua is not meaningful because it is very likely that ρM ≤ ρA . In the case of D S S, having

ug ≪ um , ua is not meaningful as well because it is very likely that ρA ≥ 1.

This set of experiments demonstrated two main things. First, that our convergence con-

dition (7.42) on the forward error seems to appropriately describe practical results obtained

with M-GMRES-IR6. Second, that variants using a lower precision on the preconditioner

application than the precision at which the matrix A is applied (i.e., ug ≥ um ≫ ua ) realize

a trade-off between variants where ug = um = ua and variants where ug ≫ um = ua .

7.3.3.2 Real-life matrices from SuiteSparse. In this section, we seek to evaluate the interest

of applying the preconditioner in a lower precision than the matrix–vector product with A,

that is, ug ≥ um ≫ ua . This configuration has never been explored in previous studies and

can potentially significantly enhance the performance of the solver, in particular, when the

application of M −1 is more costly than the application of A. It is the case, for instance, for

sparse LU and ILUT preconditioners (see section 2.3.2), where the fill-in generates factors

with a higher number of entries than A.

For these experiments we use LU and ILUT (with threshold 10−6) as preconditioners

for M-GMRES-IR6. We compare variants from two groups: (S S S, S S D, S D D) and (H H H,

H H S, H S S), where S S D and H H S are the newly proposed variants. For each variant, we run

M-GMRES-IR6 for τg = 10c where c = −10 : −1, and we keep the τg leading to the least



172 7.3. M-GMRES-IR6

0 10 20 30 40 50 60 70 80 90 100 110 120

100

108

1016

Fo
rw

ar
d

er
ro

r

1138_bus (1138×1138) - ILUT(10−6)

S D D
S S D
S S S

0 5 10 15 20 25 30 35 40 45

100

108

1016

Fo
rw

ar
d

er
ro

r

bcsstk19 (817×817) - LU

S D D
S S D
S S S

0 2 4 6 8 10 12 14 16 18 20

100

108

1016

Fo
rw

ar
d

er
ro

r

Vehicle_10NN (846×846) - LU

H S S
H H S
H H H

0 10 20 30 40 50 60 70 80

100

108

1016

#it

Fo
rw

ar
d

er
ro

r

pores_3 (532×532) - ILUT(10−6)

H S S
H H S
H H H

Figure 7.5: Evolution of the forward error for different variants of M-GMRES-IR6 on four
SuiteSparse matrices.



7. ITERATIVE REFINEMENT WITH PRECONDITIONED GMRES 173

number of cumulated GMRES iterations to reach a forward error with double precision

accuracy.

We display in Figure 7.5 the evolution of the forward error (of the original system (1.1))

of the different variants throughout the iterations for four SuiteSparse matrices. On each

plot, we specify the name of the matrix, its dimension, and the preconditioner used. A cross

means that M-GMRES-IR6 has been restarted at this iteration. The new variants S S D and

H H S are plotted in red, variants S S S and H H H with ug = um = ua are plotted in green, and

variants S D D and H S S with ug ≫ um = ua are plotted in blue. We now comment on the

results obtained for each of these four matrices.

1138_bus with the ILUT(10−6) preconditioner is a very favorable case for variant S S D

because S S D converges in less iterations than S S S and with the same number of iterations

as S D D. Therefore, as S S D applies the preconditioner in a lower precision than S D D while

converging at the same rate, it is surely more interesting to use S S D over S D D for this

specific case.

For bcsstk19 with an LU preconditioner, variant S S D converges in fewer iterations than

variant S S S but in more iterations than variant S D D; therefore, S S D is a trade-off between

the two. To extrapolate on the potential relative performance of each variant, we can con-

sider that single precision operations are twice faster as double precision ones. Conse-

quently, we can expect the execution time of S S D to be shorter than the one of S S S in

achieving double precision accuracy; however, we expect it to be higher than the one of

S D D which converges in just one iteration. On the other hand, S S D does not need to cast

the LU factors in double precision and might consume less memory than S D D for just a

small time overhead.

Vehicle_10NN with an LU preconditioner is an example of an unfavorable case for vari-

ant H H S. For this matrix, the convergence of H H S is very similar to variant H H H, which is

applying A in precision ua = H instead of ua = S as for H H S. Hence, one iteration of H H H

is less costly than one iteration of H H S and, as they do approximately the same number

of iterations, H H H is expected to be faster in computing a double precision accuracy solu-

tion. Therefore, in this case, increasing the precision for the application of A alone is not

attractive, and we would prefer variant H H H over variant H H S.

Finally, pores_3 with ILUT(10−6) preconditioner is an example of matrix where variant

H H H does not converge. In this case, we can only choose between variants H H S and H S S.

As H H S does less than two times more iterations than H S S, H H S can be faster than H S S if

the application of the preconditioner is the dominant operation in the GMRES iterations.

For instance, with ILUT, the application of A can become negligible compared with the

application of the preconditioner if we authorize ILUT to generate substantial fill-in.

7.4 Conclusion
In this chapter, we have proposed a new mixed precision algorithm for GMRES that we

call M-GMRES-IR6. Compared with LU-GMRES-IR5 presented in chapter 5, this algorithm

splits the precision at which the preconditioned matrix–vector product is computed in

two precisions um and ua for respectively the application of the preconditioner and the



174 7.4. CONCLUSION

multiplication with the matrix A. As M-GMRES-IR6 uses an arbitrary preconditioner M

and can be left- or right-preconditioned, it works as a framework that contains most of

the mixed precision strategies for GMRES present in the literature. It even proposes new

meaningful combinations of precisions that have never been considered before and can be

of practical interest. Specifically, applying the preconditioner in lower precision than the

matrix A can offer substantial gains in performance if the application of the preconditioner

is the dominant operation in the GMRES iterations. Note that even if we described the

right-preconditioned formulations in Algorithms 7.1 and 7.2, we exclusively focused on the

left-preconditioned case.

To analyse this algorithm, we proceeded in two main steps. First, we derived a backward

stability result for left MGS-GMRES in mixed precision and studied the left-preconditioned

matrix–vector product kernel to assess the relevance of decoupling the precisions um and

ua . We validated our theoretical observations with experiments on random dense matrices.

Second, we used these previous results to derive convergence conditions on the forward

and normwise backward errors of M-GMRES-IR6. We then demonstrated the validity of

the forward error convergence condition by numerical experiments with randomly gen-

erated and real-life sparse matrices. In addition, we illustrated on real-life problems that

applying the preconditioner with lower precision than the matrix–vector product with A

can potentially improve the performance.

The work described in this chapter is an ongoing work that has not been submitted for

publication yet.



8 Conclusion

8.1 Summary

In this manuscript, we have investigated the use of mixed precision iterative refinement for

improving the solution of large sparse linear systems of the form (1.1). We showed that we

could significantly reduce the resource consumption of sparse direct and iterative solvers

while still guaranteeing robustness and accuracy.

In chapter 2, we first summarized the different notions and tools used throughout this

document. In particular, we covered the basics of floating-point rounding error analysis

and recalled major results on LU and QR direct solvers. We also covered the basics of sparse

direct factorization and GMRES iterative solvers for the solution of (1.1).

Then, we provided in chapters 3 and 4 an in-depth overview of iterative refinement,

which is the central algorithm of this manuscript. These chapters cover essential results

upon which the contributions of this manuscript are built; they can also be used for an up-

to-date comprehensive introduction to iterative refinement. Chapter 3 is a chronological

survey listing the different research studies on iterative refinement. In particular, it depicts

the different evolutions of this algorithm, gives a better insight on state-of-the-art iterative

refinement, and explains how it reflects the current context and needs of present-day sci-

entific computing. Chapter 4 focuses on listing the major technical results on state-of-the-

art iterative refinement. It especially summarizes the recent work of Carson and Higham

[44; 45] that played a major role in the renewed interest this algorithm recently received

and on which most of our contributions are based.

The first primary concern of this document was to improve sparse direct solvers for the

solution of (1.1). It was done in two steps.

First, in chapter 5, we addressed the central issue of LU-GMRES-IR3, that is, the ap-

plication of the LU factors in extra-precision u 2. When the working precision u is double

precision, the factors need to be applied in quadruple precision, which might not be sup-

ported by the hardware and, hence, might be highly inefficient. In addition, many high-end

sparse direct solver software does not provide a quadruple precision implementation for

applying the LU solves. For these reasons, LU-GMRES-IR3 is not viable for many applica-

tions as it is. Our approach was to relax the precisions used inside the GMRES solver in two

175



176 8.2. FUTURE WORK

independent precisions: up ≥ u 2 (for the computation of the preconditioned matrix–vector

product) and ug ≥ u (for the rest of the operations). We did a rounding error analysis of the

resulting algorithm called LU-GMRES-IR5 to derive new conditions for the convergence of

the forward and backward errors of the solution of (1.1). A key step of this analysis was to

prove the backward stability of a mixed precision MGS-GMRES method. We then identified

the subset of meaningful combinations of precisions for this algorithm and assessed the

relevance of our theoretical results with numerical experiments on a wide set of matrices.

Second, in chapter 6, we showed that state-of-the-art iterative refinements, that is, LU-

IR3 and LU-GMRES-IR5, can greatly reduce the time and memory consumption of sparse

direct solvers for the solution of (1.1) while preserving accuracy and robustness. We demon-

strated that, combined with high-end approximate factorizations often used in state-of-

the-art sparse direct solvers, we could achieve a reduction up to 5.6× in time and 4.4× in

memory on our set of matrices coming from industrial applications. We supported this

study with a new rounding error analysis of LU-IR3 and LU-GMRES-IR5 that covers the use

of approximations and which better fits a realistic common use of sparse direct solvers.

Finally, we turned our attention to the improvement of the GMRES iterative solver

through mixed precision in chapter 7. It was the other primary concern of this manuscript.

From the observation that many mixed precision approaches for GMRES are based on the

application of an iterative refinement process or/and the mixed precision application of

various preconditioners, we proposed a new framework that gathers all these approaches

under a shared analysis. It took the form of a new algorithm that we call M-GMRES-IR6,

which is an iterative refinement variant using an arbitrary preconditioned GMRES for the

solution of the correction equation and composed of six independent precision parameters.

We carried out a rounding error analysis and demonstrated that it was relevant, from both

a numerical and performance standpoint, to apply the preconditioner with lower precision

than the matrix–vector product with A.

8.2 Future work
We now briefly discuss a few remaining challenges and open questions that could be the

object of future work.

LU-GMRES-IR3 from Carson and Higham [44; 45] and LU-GMRES-IR5 introduced in

chapter 5 are using a GMRES iterative solver for the solution of the correction equation.

However, the same approach can be straightforwardly adapted to many other iterative

solvers (e.g., CG, BiCG, or MINRES). The main reasons for this specific choice of iterative

solver instead of others are that:

• To use Theorems 4.1 and 4.2 to determine convergence conditions for a given spe-

cialization of iterative refinement, we need the linear solver for the solution of the

correction equation to satisfy the stability properties (4.4)–(4.6). It is because left-

preconditioned MGS-GMRES is backward stable that we can carry out the analysis.

On the other hand, for example, preconditioned CG is not; therefore, we cannot derive

convergence conditions for this specific choice of solver.



8. CONCLUSION 177

• GMRES solves general square linear systems and is not confined, for example, to

symmetric problems as for MINRES.

• GMRES is very popular, is widely known and used, and has been the object of many

research studies and improvements.

Regardless of these different reasons, it can still be of interest to explore the use of other

iterative solvers and compare their practical efficiency, even if a numerical analysis does

not cover them.

We observed, in the numerical experiments of section 5.5 concerning the convergence

of LU-GMRES-IR5, that the experimental forward error convergence condition is better

than the theoretical one (5.2). It tends to reveal that the convergence conditions of Theo-

rems 4.4 and 5.1 might be pessimistic to some extent. We believe that the reason for this

discrepancy might come from the regularization phenomenon, discussed in section 7.3.2,

that can occur when A is cast in precision u f for the computation of the LU factors. From

this observation, it might be interesting to try incorporating the regularization in our anal-

ysis to better capture its effect.

Concerning the parallel implementations of LU-IR3 and LU-GMRES-IR5 for the solu-

tion of large sparse systems that we covered in chapter 6, a few directions and challenges

remain to be explored.

A direct and natural improvement of the experiments done in chapter 6 is to target half

precision factorization. Because sparse direct solvers cannot exploit GPUs as efficiently

as dense solvers due to the lower granularity of the operations, it is difficult to proceed

to an efficient full half precision factorization. However, the increasing availability of half

precision in the CPUs will greatly simplify the exploitation of this arithmetic for the direct

solution of sparse linear systems. Hence, half precision in CPUs would provide reliable

access to this arithmetic that does not depend on if the solver can efficiently use the GPU

or not. However, the promise of a full half precision sparse factorization comes with a few

pending questions:

• The first is to deal with overflow and underflow. The scaling approach in section 4.7

prevents overflow and reduces underflows when A is cast in precision u f . However,

the entries of the computed LU factors in precision u f might still severely underflow

because a large pivot can generate really small values, and still overflow because, even

with GEPP, the growth factor is not guaranteed to be small.

• The second is the fact that many real-life and industrial applications present large

condition number. For instance, the median condition number of our set of large

sparse problems in chapter 6 listed in Table 6.1 is κ(A) = 4×106, while the condition

for convergence of LU-IR3 is κ(A)≤ 2×103. Consequently, LU-IR3 would potentially

be unable to compute most of our problems. Moreover, even though LU-GMRES-

IR5 can achieve better convergence conditions, it is unclear how many iterations the

algorithm would need to converge and if it can stay competitive with a variant using

higher precision in the factorization.



178 8.2. FUTURE WORK

The promise of easier half precision access in computers also raises questions about

implementing maintainable high performance mixed precision algorithms. In our case, we

used the Fortran 2018 standard for our parallel implementations of LU-IR3 and LU-GMRES-

IR5. As Fortran does not provide templating features, two versions of the same routine, one

in single precision and the other in double (say), must be written twice for both precisions.

The main issue is that, with four different arithmetics available (e.g., half, single, double, and

quadruple), a mixed precision algorithm can potentially be derived in many combinations

of its precisions. Necessarily, writing a specific code for each of these combinations is not

feasible because, with a high combinatory on the precisions of the algorithm, it would

lead to an unmaintainable amount of code. It leads to questioning the best practices for

coding efficient mixed precision algorithms that can offer a wide variety of combinations.

For our own implementation, we built a source-to-source precompiler that generates every

required combination of precisions of a given routine. While this solution is viable, it can

generate a heavy load of source code due to the high combinatory, which would slow down

the compilation. Other approaches are possible, such as relying on the object-oriented

programming features of Fortran or using programming languages supporting templates

(e.g., C++). A last promising option is using languages like Julia that are doing Just In Time

compilation to offer both genericity to the code and performance. It is the language we use

for the experiments of chapters 5 and 7; it would be interesting to evaluate to which extent

it can be used to run high performance computing applications.

Lastly, we mentioned in section 6.4.3 two possibilities for the cast of the factors from

precision u f to precision up in LU-GMRES-IR5. We can either make an explicit copy of the

factors or cast them on the fly during forward and backward substitutions. We chose the

explicit copy approach that led to the least amount of time overhead, but cast on the fly

remains very interesting from a memory standpoint. The promising results of Anzt et al.

[24], Flegar et al. [73], which demonstrated that it was possible to even save time on memory-

bound applications by casting on the fly from low to high precision, definitely raised our

interest in implementing an efficient cast on the fly LU solve for the MUMPS solver.

Finally, a few major ways of improvement need to be considered to complete the work

of chapter 7 on M-GMRES-IR6:

• A crucial missing piece is an error analysis of the right-preconditioned case. While the

cost of an inner iteration of left and right M-GMRES-IR6 is equivalent, it is of interest

to understand if the right M-GMRES-IR6 presents major numerical differences or not

compared with the left M-GMRES-IR6.

• We know that the rounding errors made in the preconditioned matrix–vector prod-

uct kernels depend on the preconditioner and the way it is applied. So far, we have

considered explicit and implicit construction via LU factorization. However, it could

be interesting to conduct analyses on other preconditioners, such as polynomial or

when an iterative solver is used as a preconditioner.

• In section 7.3.3, we evaluated how the different precisions um , ua , and ug (resp. the

precision for the application of the preconditioner, for the matrix–vector product

with A, and for the rest of the GMRES operations) affect the convergence. However,



8. CONCLUSION 179

we did not consider the fourth precision u f at which the preconditioner is computed

and which is also expected to affect the convergence.

• We showed cases where applying the preconditioner in a lower precision than the

matrix–vector products with A for the solution of (1.1) was relevant numerically. We

extrapolate that it might have some performance benefits for the solution of large

sparse linear systems. However, to assess it undoubtedly, we need to make a perfor-

mance study of a parallel implementation of M-GMRES-IR6.





Scientific
communications

Journal articles
[J2] Patrick R. Amestoy, Alfredo Buttari, Nicholas J. Higham, Jean-Yves L’Excellent, Théo

Mary, and Bastien Vieublé. Combining sparse approximate factorizations with mixed

precision iterative refinement. To appear in ACM Transactions on Mathematical Soft-

ware, October 2022.

[J1] Patrick R. Amestoy, Alfredo Buttari, Nicholas J. Higham, Jean-Yves L’Excellent, Théo

Mary, and Bastien Vieublé. Five-precision GMRES-based iterative refinement. Preprint,

April 2021.

Talks in conferences
[C8] Patrick R. Amestoy, Alfredo Buttari, Nicholas J. Higham, Jean-Yves L’Excellent, Théo

Mary, and Bastien Vieublé. Mixed precision strategies for preconditioned GMRES.

Sparse Days (In-Person), St Girons (France), June 2022.

[C7] Patrick R. Amestoy, Alfredo Buttari, Nicholas J. Higham, Jean-Yves L’Excellent, Théo

Mary, and Bastien Vieublé. Combining sparse approximate factorizations with mixed

precision iterative refinement. ISC High Performance (ISC 22) (In-Person), Hamburg

(Germany), May 2022.

[C6] Patrick R. Amestoy, Alfredo Buttari, Nicholas J. Higham, Jean-Yves L’Excellent, Théo

Mary, and Bastien Vieublé. Mixed Precision Iterative Refinement with Approximate

Factorization for the Solution of Large Sparse Systems. SIAM Conference on Parallel

Processing for Scientific Computing (SIAM PP 22) (Virtual), February 2022.

[C5] Patrick R. Amestoy, Alfredo Buttari, Nicholas J. Higham, Jean-Yves L’Excellent, Théo

Mary, and Bastien Vieublé. Modern iterative refinement methods for the solution of

large sparse linear systems. Congrès des Jeunes Chercheuses et Chercheurs en Mathé-

matiques Appliquées (CJC-MA) (In-Person), Paris (France), October 2021.

181



182 SCIENTIFIC COMMUNICATIONS

[C4] Patrick R. Amestoy, Alfredo Buttari, Nicholas J. Higham, Jean-Yves L’Excellent, Théo

Mary, and Bastien Vieublé. Mixed precision iterative refinement for the solution of

large sparse linear systems. 12èmes Rencontres Arithmétique de l’Informatique Math-

ématique (RAIM 21) (Virtual), May 2021.

[C3] Patrick R. Amestoy, Alfredo Buttari, Nicholas J. Higham, Jean-Yves L’Excellent, Théo

Mary, and Bastien Vieublé. GMRES-based iterative refinement in up to five precisions.

SIAM Conference on Computational Science and Engineering (SIAM CSE 21) (Virtual),

March 2021.

[C2] Patrick R. Amestoy, Alfredo Buttari, Nicholas J. Higham, Jean-Yves L’Excellent, Théo

Mary, and Bastien Vieublé. Mixed precision iterative refinement for the solution of

large sparse linear systems. World Congress on Computational Mechanics and Eu-

ropean Congress on Computational Methods in Applied Sciences and Engineering

(WCCM-ECCOMAS 20) (Virtual), January 2021.

[C1] Patrick R. Amestoy, Alfredo Buttari, Nicholas J. Higham, Jean-Yves L’Excellent, Théo

Mary, and Bastien Vieublé. Mixed precision iterative refinement for the solution of

large sparse linear systems. Sparse Days (Virtual), November 2020.



Bibliography

[1] Bfloat16—hardware numerics definition. Intel Corporation, (338302-001US),

2018. URL https://www.intel.com/content/dam/develop/external/us/en/
documents/bf16-hardware-numerics-definition-white-paper.pdf. 9

[2] TOP500, 2022. URL https://www.top500.org/lists/top500/2022/06/. 1, 9, 52

[3] Ahmad Abdelfattah, Hartwig Anzt, Erik G. Boman, Erin Carson, Terry Cojean, Jack

Dongarra, Alyson Fox, Mark Gates, Nicholas J. Higham, Xiaoye S. Li, Jennifer Loe,

Piotr Luszczek, Srikara Pranesh, Siva Rajamanickam, Tobias Ribizel, Barry F. Smith,

Kasia Swirydowicz, Stephen Thomas, Stanimire Tomov, Yaohung M. Tsai, and Ul-

rike Meier Yang. A survey of numerical linear algebra methods utilizing mixed-

precision arithmetic. The International Journal of High Performance Computing

Applications, 35(4):344–369, March 2021. doi: 10.1177/10943420211003313. URL

https://doi.org/10.1177/10943420211003313. 12, 53

[4] Emmanuel Agullo, James W. Demmel, Jack Dongarra, Bilel Hadri, Jakub Kurzak, Julien

Langou, Hatem Ltaief, Piotr Luszczek, and Stanimire Tomov. Numerical linear algebra

on emerging architectures: The PLASMA and MAGMA projects. Journal of Physics:

Conference Series, 180:012037, July 2009. doi: 10.1088/1742-6596/180/1/012037. URL

https://doi.org/10.1088/1742-6596/180/1/012037. 49

[5] Emmanuel Agullo, Patrick R. Amestoy, Alfredo Buttari, Abdou Guermouche, Jean-Yves

L’Excellent, and François-Henry Rouet. Robust memory-aware mappings for parallel

multifrontal factorizations. SIAM Journal on Scientific Computing, 38(3):C256–C279,

2016. doi: 10.1137/130938505. URL https://doi.org/10.1137/130938505. 133

[6] Emmanuel Agullo, Luc Giraud, Stojce Nakov, and Jean Roman. Hierarchical hybrid

sparse linear solver for multicore platforms. Research Report RR-8960, INRIA Bor-

deaux, October 2016. URL https://hal.inria.fr/hal-01379227. 2

[7] Emmanuel Agullo, Franck Cappello, Sheng Di, Luc Giraud, Xin Liang, and Nick

Schenkels. Exploring variable accuracy storage through lossy compression tech-

niques in numerical linear algebra: a first application to flexible GMRES. Research

183

https://www.intel.com/content/dam/develop/external/us/en/documents/bf16-hardware-numerics-definition-white-paper.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/bf16-hardware-numerics-definition-white-paper.pdf
https://www.top500.org/lists/top500/2022/06/
https://doi.org/10.1177/10943420211003313
https://doi.org/10.1088/1742-6596/180/1/012037
https://doi.org/10.1137/130938505
https://hal.inria.fr/hal-01379227


184 BIBLIOGRAPHY

Report RR-9342, Inria Bordeaux Sud-Ouest, May 2020. URL https://hal.inria.
fr/hal-02572910. 150

[8] Hussam Al Daas, Laura Grigori, Pierre Jolivet, and Pierre-Henri Tournier. A Multilevel

Schwarz Preconditioner Based on a Hierarchy of Robust Coarse Spaces. 43(3):A1907–

A1928, 2021. URL https://github.com/prj-/aldaas2019multi. 123

[9] José I. Aliaga, Hartwig Anzt, Thomas Grützmacher, Enrique S. Quintana-Ortí, and

Andrés E. Tomás. Compressed basis GMRES on high-performance graphics pro-

cessing units. The International Journal of High Performance Computing Applica-

tions, page 109434202211151, August 2022. doi: 10.1177/10943420221115140. URL

https://doi.org/10.1177/10943420221115140. 150

[10] Patrick Amestoy, Olivier Boiteau, Alfredo Buttari, Matthieu Gerest, Fabienne Jézéquel,

Jean-Yves L’Excellent, and Theo Mary. Mixed precision low-rank approximations

and their application to block low-rank LU factorization. IMA Journal of Numerical

Analysis, August 2022. doi: 10.1093/imanum/drac037. URL https://doi.org/10.
1093/imanum/drac037. 29

[11] Patrick R. Amestoy, Timothy A. Davis, and Iain S. Duff. An Approximate Minimum

Degree Ordering Algorithm. SIAM Journal on Matrix Analysis and Applications, 17(4):

886–905, October 1996. doi: 10.1137/s0895479894278952. URL https://doi.org/
10.1137%2Fs0895479894278952. 23

[12] Patrick R. Amestoy, Iain S. Duff, Jean-Yves L’Excellent, and Jacko Koster. A fully

asynchronous multifrontal solver using distributed dynamic scheduling. SIAM

Journal on Matrix Analysis and Applications, 23(1):15–41, 2001. doi: 10.1137/
S0895479899358194. URL https://doi.org/10.1137/S0895479899358194. 26,

46, 120

[13] Patrick R. Amestoy, Iain S. Duff, Jean-Yves L'Excellent, and Xiaoye S. Li. Analysis

and comparison of two general sparse solvers for distributed memory computers.

ACM Transactions on Mathematical Software, 27(4):388–421, December 2001. doi:

10.1145/504210.504212. URL https://doi.org/10.1145%2F504210.504212. 46

[14] Patrick R. Amestoy, Cleve Ashcraft, Olivier Boiteau, Alfredo Buttari, Jean-Yves

L’Excellent, and Clément Weisbecker. Improving multifrontal methods by means of

block low-rank representations. SIAM Journal on Scientific Computing, 37(3):A1451–

A1474, 2015. doi: 10.1137/120903476. URL https://doi.org/10.1137/120903476.

27, 120

[15] Patrick R. Amestoy, Romain Brossier, Alfredo Buttari, Jean-Yves L’Excellent, Theo

Mary, Ludovic Métivier, Alain Miniussi, and Stephane Operto. Fast 3D frequency-

domain full-waveform inversion with a parallel block low-rank multifrontal direct

solver: Application to OBC data from the North Sea. GEOPHYSICS, 81(6):R363–R383,

November 2016. doi: 10.1190/geo2016-0052.1. URL https://doi.org/10.1190%
2Fgeo2016-0052.1. 27

https://hal.inria.fr/hal-02572910
https://hal.inria.fr/hal-02572910
https://github.com/prj-/aldaas2019multi
https://doi.org/10.1177/10943420221115140
https://doi.org/10.1093/imanum/drac037
https://doi.org/10.1093/imanum/drac037
https://doi.org/10.1137%2Fs0895479894278952
https://doi.org/10.1137%2Fs0895479894278952
https://doi.org/10.1137/S0895479899358194
https://doi.org/10.1145%2F504210.504212
https://doi.org/10.1137/120903476
https://doi.org/10.1190%2Fgeo2016-0052.1
https://doi.org/10.1190%2Fgeo2016-0052.1


BIBLIOGRAPHY 185

[16] Patrick R. Amestoy, Alfredo Buttari, Jean-Yves L’Excellent, and Theo Mary. On the

complexity of the block low-rank multifrontal factorization. SIAM Journal on Scien-

tific Computing, 39(4):A1710–A1740, 2017. doi: 10.1137/16M1077192. URL https:
//doi.org/10.1137/16M1077192. 27, 28

[17] Patrick R. Amestoy, Alfredo Buttari, Jean-Yves L’Excellent, and Theo Mary. Perfor-

mance and scalability of the block low-rank multifrontal factorization on multicore

architectures. ACM Transactions on Mathematical Software, 45(1), February 2019.

ISSN 0098-3500. doi: 10.1145/3242094. URL https://doi.org/10.1145/3242094.

27, 120, 143

[18] Patrick R. Amestoy, Alfredo Buttari, Nicholas J. Higham, Jean-Yves L’Excellent,

Théo Mary, and Bastien Vieublé. Five-precision GMRES-based iterative refine-

ment. Preprint, April 2021. URL http://eprints.maths.manchester.ac.uk/id/
eprint/2807. 56, 57, 65, 110, 149, 152

[19] Patrick R. Amestoy, Alfredo Buttari, Nicholas J. Higham, Jean-Yves L’Excellent, Théo

Mary, and Bastien Vieublé. Combining sparse approximate factorizations with mixed

precision iterative refinement. To appear in ACM Transactions on Mathematical Soft-

ware, January 2022. URL https://hal.archives-ouvertes.fr/hal-03536031.

56, 57, 65, 148, 152

[20] Bernard Van Antwerpen, Yves Detandt, Diego Copiello, Eveline Rosseel, and Eloi

Gaudry. Performance improvements and new solution strategies of Actran/TM for

nacelle simulations. 2014. doi: 10.2514/6.2014-2315. URL https://arc.aiaa.org/
doi/abs/10.2514/6.2014-2315. 123

[21] Hartwig Anzt, Vincent Heuveline, and Björn Rocker. An Error Correction Solver for

Linear Systems: Evaluation of Mixed Precision Implementations. In Lecture Notes

in Computer Science, pages 58–70. Springer Berlin Heidelberg, 2011. doi: 10.1007/
978-3-642-19328-6_8. URL https://doi.org/10.1007/978-3-642-19328-6_8.

48, 57, 150, 152

[22] Hartwig Anzt, Vincent Heuveline, and Björn Rocker. Mixed Precision Iterative Refine-

ment Methods for Linear Systems: Convergence Analysis Based on Krylov Subspace

Methods. In Applied Parallel and Scientific Computing, pages 237–247. Springer

Berlin Heidelberg, 2012. doi: 10.1007/978-3-642-28145-7_24. URL https://doi.
org/10.1007/978-3-642-28145-7_24. 48, 57, 150, 152

[23] Hartwig Anzt, Jack Dongarra, Goran Flegar, Nicholas J. Higham, and Enrique S.

Quintana-Ortí. Adaptive precision in block-jacobi preconditioning for iterative

sparse linear system solvers. Concurrency and Computation: Practice and Experi-

ence, 31(6):e4460, March 2018. doi: 10.1002/cpe.4460. URL https://doi.org/10.
1002/cpe.4460. 150, 152

[24] Hartwig Anzt, Jack Dongarra, Goran Flegar, Nicholas J. Higham, and Enrique S.

Quintana-Ortí. Adaptive precision in block-jacobi preconditioning for iterative

https://doi.org/10.1137/16M1077192
https://doi.org/10.1137/16M1077192
https://doi.org/10.1145/3242094
http://eprints.maths.manchester.ac.uk/id/eprint/2807
http://eprints.maths.manchester.ac.uk/id/eprint/2807
https://hal.archives-ouvertes.fr/hal-03536031
https://arc.aiaa.org/doi/abs/10.2514/6.2014-2315
https://arc.aiaa.org/doi/abs/10.2514/6.2014-2315
https://doi.org/10.1007/978-3-642-19328-6_8
https://doi.org/10.1007/978-3-642-28145-7_24
https://doi.org/10.1007/978-3-642-28145-7_24
https://doi.org/10.1002/cpe.4460
https://doi.org/10.1002/cpe.4460


186 BIBLIOGRAPHY

sparse linear system solvers. Concurrency and Computation: Practice and Expe-

rience, 31(6):e4460, 2019. doi: https://doi.org/10.1002/cpe.4460. URL https://
onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4460. e4460 cpe.4460. 12,

120, 127, 178

[25] Mario Arioli and Iain S. Duff. Using FGMRES to obtain backward stability in mixed

precision. ETNA. Electronic Transactions on Numerical Analysis [electronic only], 33:

31–44, 2008. URL http://eudml.org/doc/130614. 4, 36, 48, 56, 149, 150, 152

[26] Mario Arioli, James W. Demmel, and Iain S. Duff. Solving Sparse Linear Systems with

Sparse Backward Error. SIAM Journal on Matrix Analysis and Applications, 10(2):165–

190, April 1989. doi: 10.1137/0610013. URL https://doi.org/10.1137/0610013.

44, 45, 56, 112, 116, 119

[27] Mario Arioli, Iain S. Duff, Serge Gratton, and Stéphane Pralet. A Note on GMRES

Preconditioned by a Perturbed LD L T Decomposition with Static Pivoting. SIAM

Journal on Scientific Computing, 29(5):2024–2044, 2007. doi: 10.1137/060661545.

URL https://doi.org/10.1137/060661545. 36, 48, 56, 150

[28] Walter E. Arnoldi. The principle of minimized iterations in the solution of the matrix

eigenvalue problem. Quarterly of Applied Mathematics, 9(1):17–29, 1951. doi: 10.

1090/qam/42792. URL https://doi.org/10.1090%2Fqam%2F42792. 31

[29] Marc Baboulin, Alfredo Buttari, Jack Dongarra, Jakub Kurzak, Julie Langou, Julien

Langou, Piotr Luszczek, and Stanimire Tomov. Accelerating scientific computations

with mixed precision algorithms. Computer Physics Communications, 180(12):2526–

2533, December 2009. doi: 10.1016/j.cpc.2008.11.005. URL https://doi.org/10.
1016/j.cpc.2008.11.005. 3, 48, 56, 112

[30] Oleg Balabanov and Laura Grigori. Randomized Gram–Schmidt Process with Appli-

cation to GMRES. SIAM Journal on Scientific Computing, 44(3):A1450–A1474, June

2022. doi: 10.1137/20m138870x. URL https://doi.org/10.1137%2F20m138870x.

150

[31] Friedrich L. Bauer. Elimination with Weighted Row Combinations for Solving Linear

Equations and Least Squares Problems. In Handbook for Automatic Computation,

pages 119–133. Springer Berlin Heidelberg, 1971. doi: 10.1007/978-3-642-86940-2_9.

URL https://doi.org/10.1007/978-3-642-86940-2_9. 43, 57, 71

[32] Åke Björck. Iterative refinement of linear least squares solutions I. BIT, 7(4):257–

278, December 1967. doi: 10.1007/bf01939321. URL https://doi.org/10.1007/
bf01939321. 43, 45, 47, 50, 52, 56, 57, 72

[33] Åke Björck. Comment on the iterative refinement of least-squares solutions. Journal

of the American Statistical Association, 73(361):161–166, 1978. ISSN 01621459. URL

http://www.jstor.org/stable/2286538. 43

https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4460
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4460
http://eudml.org/doc/130614
https://doi.org/10.1137/0610013
https://doi.org/10.1137/060661545
https://doi.org/10.1090%2Fqam%2F42792
https://doi.org/10.1016/j.cpc.2008.11.005
https://doi.org/10.1016/j.cpc.2008.11.005
https://doi.org/10.1137%2F20m138870x
https://doi.org/10.1007/978-3-642-86940-2_9
https://doi.org/10.1007/bf01939321
https://doi.org/10.1007/bf01939321
http://www.jstor.org/stable/2286538


BIBLIOGRAPHY 187

[34] Åke Björck and Gene H. Golub. Iterative refinements of linear least squares solutions

by Householder transformations. Technical report, January 1968. URL http://i.
stanford.edu/pub/cstr/reports/cs/tr/68/83/CS-TR-68-83.pdf. 43, 57

[35] Pierre Blanchard, Nicholas J. Higham, Florent Lopez, Theo Mary, and Srikara Pranesh.

Mixed precision block fused multiply-add: Error analysis and application to GPU

tensor cores. SIAM Journal on Scientific Computing, 42(3):C124–C141, January 2020.

doi: 10.1137/19m1289546. URL https://doi.org/10.1137/19m1289546. 52

[36] Daniel Boley, Gene H. Golub, Samy Makar, Nirmal Saxena, and Edward J. McCluskey.

Floating point fault tolerance with backward error assertions. IEEE Transactions on

Computers, 44(2):302–311, 1995. doi: 10.1109/12.364541. URL https://doi.org/
10.1109/12.364541. 45, 56, 57

[37] Hilary J. Bowdler, Roger S. Martin, G. Peters, and James H. Wilkinson. Solution of

real and complex systems of linear equations. Numerische Mathematik, 8(3):217–234,

May 1966. doi: 10.1007/bf02162559. URL https://doi.org/10.1007/bf02162559.

42, 56

[38] Hilary J. Bowdler, Roger S. Martin, G. Peters, and James H. Wilkinson. Solution of real

and complex systems of linear equations. In Handbook for Automatic Computation,

pages 93–110. Springer Berlin Heidelberg, 1971. doi: 10.1007/978-3-642-86940-2_7.

URL https://doi.org/10.1007/978-3-642-86940-2_7. 42, 56

[39] Peter Businger and Gene H. Golub. Linear least squares solutions by Householder

transformations. Numerische Mathematik, 7(3):269–276, June 1965. doi: 10.1007/
bf01436084. URL https://doi.org/10.1007/bf01436084. 43, 57

[40] Alfredo Buttari. Scalability of parallel sparse direct solvers: methods, memory and

performance. Habilitation à diriger des recherches, Toulouse INP, September 2018.

URL https://hal.archives-ouvertes.fr/tel-01913033. 21

[41] Alfredo Buttari, Jack Dongarra, Julie Langou, Julien Langou, Piotr Luszczek, and Jakub

Kurzak. Mixed Precision Iterative Refinement Techniques for the Solution of Dense

Linear Systems. The International Journal of High Performance Computing Ap-

plications, 21(4):457–466, November 2007. doi: 10.1177/1094342007084026. URL

https://doi.org/10.1177/1094342007084026. 47, 48, 56

[42] Alfredo Buttari, Jack Dongarra, Jakub Kurzak, Piotr Luszczek, and Stanimir Tomov.

Using Mixed Precision for Sparse Matrix Computations to Enhance the Performance

while Achieving 64-bit Accuracy. ACM Transactions on Mathematical Software, 34(4):

1–22, July 2008. doi: 10.1145/1377596.1377597. URL https://doi.org/10.1145/
1377596.1377597. 3, 4, 48, 56, 112, 150, 152

[43] Alfredo Buttari, Julien Langou, Jakub Kurzak, and Jack Dongarra. A class of parallel

tiled linear algebra algorithms for multicore architectures. Parallel Computing, 35

(1):38–53, January 2009. doi: 10.1016/j.parco.2008.10.002. URL https://doi.org/
10.1016%2Fj.parco.2008.10.002. 17

http://i.stanford.edu/pub/cstr/reports/cs/tr/68/83/CS-TR-68-83.pdf
http://i.stanford.edu/pub/cstr/reports/cs/tr/68/83/CS-TR-68-83.pdf
https://doi.org/10.1137/19m1289546
https://doi.org/10.1109/12.364541
https://doi.org/10.1109/12.364541
https://doi.org/10.1007/bf02162559
https://doi.org/10.1007/978-3-642-86940-2_7
https://doi.org/10.1007/bf01436084
https://hal.archives-ouvertes.fr/tel-01913033
https://doi.org/10.1177/1094342007084026
https://doi.org/10.1145/1377596.1377597
https://doi.org/10.1145/1377596.1377597
https://doi.org/10.1016%2Fj.parco.2008.10.002
https://doi.org/10.1016%2Fj.parco.2008.10.002


188 BIBLIOGRAPHY

[44] Erin Carson and Nicholas J. Higham. A New Analysis of Iterative Refinement and

Its Application to Accurate Solution of Ill-Conditioned Sparse Linear Systems. SIAM

Journal on Scientific Computing, 39(6):A2834–A2856, January 2017. doi: 10.1137/
17m1122918. URL https://doi.org/10.1137/17m1122918. 3, 51, 56, 57, 64, 68,

69, 81, 82, 83, 92, 99, 114, 151, 152, 175, 176, 207

[45] Erin Carson and Nicholas J. Higham. Accelerating the Solution of Linear Systems by

Iterative Refinement in Three Precisions. SIAM Journal on Scientific Computing, 40

(2):A817–A847, January 2018. doi: 10.1137/17m1140819. URL https://doi.org/
10.1137/17m1140819. 3, 12, 36, 51, 52, 56, 57, 61, 62, 63, 65, 66, 68, 69, 80, 81, 83, 88,

89, 91, 92, 110, 114, 149, 151, 152, 175, 176, 207

[46] Erin Carson and Noaman Khan. Mixed Precision Iterative Refinement with Sparse

Approximate Inverse Preconditioning. 2022. doi: 10.48550/ARXIV.2202.10204. URL

https://arxiv.org/abs/2202.10204. 52, 56, 57, 65, 70, 151, 152

[47] Erin Carson, Nicholas J. Higham, and Srikara Pranesh. Three-Precision GMRES-

Based Iterative Refinement for Least Squares Problems. SIAM Journal on Scien-

tific Computing, 42(6):A4063–A4083, January 2020. doi: 10.1137/20m1316822. URL

https://doi.org/10.1137/20m1316822. 52, 56, 57, 65, 73, 74, 75, 80, 105, 109

[48] Erin Carson, Tomáš Gergelits, and Ichitaro Yamazaki. Mixed precision s-step Lanczos

and conjugate gradient algorithms. Numerical Linear Algebra with Applications, 29

(3), November 2021. doi: 10.1002/nla.2425. URL https://doi.org/10.1002/nla.
2425. 149, 150

[49] Jack Choquette, Wishwesh Gandhi, Olivier Giroux, Nick Stam, and Ronny Krashinsky.

NVIDIA A100 Tensor Core GPU: Performance and Innovation. IEEE Micro, 41(2):29–

35, March 2021. doi: 10.1109/mm.2021.3061394. URL https://doi.org/10.1109%
2Fmm.2021.3061394. 9

[50] Michael P. Connolly, Nicholas J. Higham, and Theo Mary. Stochastic rounding and

its probabilistic backward error analysis. SIAM Journal on Scientific Computing, 43

(1):A566–A585, January 2021. doi: 10.1137/20m1334796. URL https://doi.org/
10.1137/20m1334796. 14

[51] Jack Copeland. Alan Turing’s Automatic Computing Engine. 2005. URL

https://oxford.universitypressscholarship.com/view/10.1093/acprof:
oso/9780198565932.001.0001/acprof-9780198565932. 40

[52] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Training deep neural

networks with low precision multiplications. 2014. doi: 10.48550/ARXIV.1412.7024.

URL https://arxiv.org/abs/1412.7024. 10

[53] Timothy A. Davis. Algorithm 832: UMFPACK V4.3—an Unsymmetric-Pattern Multi-

frontal Method2. ACM Transactions on Mathematical Software, 30(2):196–199, June

2004. ISSN 0098-3500. doi: 10.1145/992200.992206. URL https://doi.org/10.
1145/992200.992206. 26

https://doi.org/10.1137/17m1122918
https://doi.org/10.1137/17m1140819
https://doi.org/10.1137/17m1140819
https://arxiv.org/abs/2202.10204
https://doi.org/10.1137/20m1316822
https://doi.org/10.1002/nla.2425
https://doi.org/10.1002/nla.2425
https://doi.org/10.1109%2Fmm.2021.3061394
https://doi.org/10.1109%2Fmm.2021.3061394
https://doi.org/10.1137/20m1334796
https://doi.org/10.1137/20m1334796
https://oxford.universitypressscholarship.com/view/10.1093/acprof:oso/9780198565932.001.0001/acprof-9780198565932
https://oxford.universitypressscholarship.com/view/10.1093/acprof:oso/9780198565932.001.0001/acprof-9780198565932
https://arxiv.org/abs/1412.7024
https://doi.org/10.1145/992200.992206
https://doi.org/10.1145/992200.992206


BIBLIOGRAPHY 189

[54] Timothy A. Davis. Direct Methods for Sparse Linear Systems. Society for Industrial

and Applied Mathematics, January 2006. doi: 10.1137/1.9780898718881. URL https:
//doi.org/10.1137%2F1.9780898718881. 21

[55] Timothy A. Davis and Yifan Hu. The university of Florida sparse matrix collection.

ACM Transactions on Mathematical Software, 38(1):1–25, November 2011. doi: 10.

1145/2049662.2049663. URL https://doi.org/10.1145/2049662.2049663. 100,

122, 168

[56] Jeffrey Dean. The Deep Learning Revolution and Its Implications for Computer Ar-

chitecture and Chip Design. 2019. doi: 10.48550/ARXIV.1911.05289. URL https:
//arxiv.org/abs/1911.05289. 10

[57] James W. Demmel. The probability that a numerical analysis problem is difficult.

Mathematics of Computation, 50(182):449–480, 1988. ISSN 00255718, 10886842. URL

http://www.jstor.org/stable/2008617. 84

[58] James W. Demmel. Applied Numerical Linear Algebra. Society for Industrial and

Applied Mathematics, January 1997. doi: 10.1137/1.9781611971446. URL https:
//doi.org/10.1137/1.9781611971446. 46, 56

[59] James W. Demmel, Stanley C. Eisenstat, John R. Gilbert, Xiaoye S. Li, and Joseph W. H.

Liu. A supernodal approach to sparse partial pivoting. SIAM Journal on Matrix

Analysis and Applications, 20(3):720–755, 1999. doi: 10.1137/S0895479895291765.

URL https://doi.org/10.1137/S0895479895291765. 46, 120

[60] James W. Demmel, Yozo Hida, William Kahan, Xiaoye S. Li, Sonil Mukherjee, and Jason

Riedy. Error bounds from extra-precise iterative refinement. ACM Transactions on

Mathematical Software, 32(2):325–351, June 2006. doi: 10.1145/1141885.1141894.

URL https://doi.org/10.1145/1141885.1141894. 50, 56, 75, 76

[61] James W. Demmel, Yozo Hida, Jason Riedy, and Xiaoye S. Li. Extra-Precise Iterative

Refinement for Overdetermined Least Squares Problems. ACM Transactions on Math-

ematical Software, 35(4):1–32, February 2009. doi: 10.1145/1462173.1462177. URL

https://doi.org/10.1145/1462173.1462177. 50, 57

[62] ARM Developer. Half-precision floating-point number for-

mat. URL https://developer.arm.com/documentation/
100067/0607/Other-Compiler-specific-Features/
Half-precision-floating-point-number-format. [Online; accessed 7-July-

2022]. 9

[63] Victorita Dolean, Pierre Jolivet, and Frédéric Nataf. An Introduction to Domain

Decomposition Methods. Society for Industrial and Applied Mathematics, Novem-

ber 2015. doi: 10.1137/1.9781611974065. URL https://doi.org/10.1137%2F1.
9781611974065. 2

https://doi.org/10.1137%2F1.9780898718881
https://doi.org/10.1137%2F1.9780898718881
https://doi.org/10.1145/2049662.2049663
https://arxiv.org/abs/1911.05289
https://arxiv.org/abs/1911.05289
http://www.jstor.org/stable/2008617
https://doi.org/10.1137/1.9781611971446
https://doi.org/10.1137/1.9781611971446
https://doi.org/10.1137/S0895479895291765
https://doi.org/10.1145/1141885.1141894
https://doi.org/10.1145/1462173.1462177
https://developer.arm.com/documentation/100067/0607/Other-Compiler-specific-Features/Half-precision-floating-point-number-format
https://developer.arm.com/documentation/100067/0607/Other-Compiler-specific-Features/Half-precision-floating-point-number-format
https://developer.arm.com/documentation/100067/0607/Other-Compiler-specific-Features/Half-precision-floating-point-number-format
https://doi.org/10.1137%2F1.9781611974065
https://doi.org/10.1137%2F1.9781611974065


190 BIBLIOGRAPHY

[64] Jack Dongarra. Preface: Basic Linear Algebra Subprograms Technical (Blast) Forum

Standard. The International Journal of High Performance Computing Applications,

16(1):1–1, 2002. doi: 10.1177/10943420020160010101. URL https://doi.org/10.
1177/10943420020160010101. 49

[65] Jack Dongarra, Cleve B. Moler, and James H. Wilkinson. Improving the Accuracy of

Computed Eigenvalues and Eigenvectors. SIAM Journal on Numerical Analysis, 20

(1):23–45, February 1983. doi: 10.1137/0720002. URL https://doi.org/10.1137/
0720002. 44, 56

[66] Jack Dongarra, Victor Eijkhout, and Piotr Łuszczek. Recursive Approach in Sparse

Matrix LU Factorization. Scientific Programming, 9(1):51–60, 2001. doi: 10.1155/
2001/569670. URL https://doi.org/10.1155/2001/569670. 44, 56, 112

[67] Craig C. Douglas, Jan Mandel, and Willard L. Miranker. Fast Hybrid Solution of Al-

gebraic Systems. SIAM Journal on Scientific and Statistical Computing, 11(6):1073–

1086, November 1990. doi: 10.1137/0911060. URL https://doi.org/10.1137%
2F0911060. 46, 56, 57

[68] Jitka Drkošová, Anne Greenbaum, Miroslav Rozložník, and Zdeněk Strakoš. Numeri-

cal stability of GMRES. BIT Numerical Mathematics, 35(3):309–330, September 1995.

doi: 10.1007/bf01732607. URL https://doi.org/10.1007/bf01732607. 33

[69] Iain S. Duff and John K. Reid. The Multifrontal Solution of Indefinite Sparse Symmet-

ric Linear. ACM Transactions on Mathematical Software, 9(3):302–325, September

1983. doi: 10.1145/356044.356047. URL https://doi.org/10.1145%2F356044.
356047. 21

[70] Iain S. Duff and John K. Reid. The Multifrontal Solution of Unsymmetric Sets of

Linear Equations. SIAM Journal on Scientific and Statistical Computing, 5(3):633–

641, September 1984. doi: 10.1137/0905045. URL https://doi.org/10.1137%
2F0905045. 21

[71] Iain S. Duff, Ronan Guivarch, Daniel Ruiz, and Mohamed Zenadi. The Augmented

Block Cimmino Distributed Method. SIAM Journal on Scientific Computing, 37(3):

A1248–A1269, January 2015. doi: 10.1137/140961444. URL https://doi.org/10.
1137%2F140961444. 2

[72] Iain S. Duff, Albert M. Erisman, and John K. Reid. Direct Methods for Sparse Ma-

trices. Oxford University Press, 01 2017. ISBN 9780198508380. doi: 10.1093/
acprof:oso/9780198508380.001.0001. URL https://doi.org/10.1093/acprof:
oso/9780198508380.001.0001. 21, 26, 46, 120

[73] Goran Flegar, Hartwig Anzt, Terry Cojean, and Enrique S. Quintana-Ortí. Adaptive

precision block-jacobi for high performance preconditioning in the ginkgo linear

algebra software. ACM Transactions on Mathematical Software, 47(2), April 2021.

ISSN 0098-3500. doi: 10.1145/3441850. URL https://doi.org/10.1145/3441850.

127, 178

https://doi.org/10.1177/10943420020160010101
https://doi.org/10.1177/10943420020160010101
https://doi.org/10.1137/0720002
https://doi.org/10.1137/0720002
https://doi.org/10.1155/2001/569670
https://doi.org/10.1137%2F0911060
https://doi.org/10.1137%2F0911060
https://doi.org/10.1007/bf01732607
https://doi.org/10.1145%2F356044.356047
https://doi.org/10.1145%2F356044.356047
https://doi.org/10.1137%2F0905045
https://doi.org/10.1137%2F0905045
https://doi.org/10.1137%2F140961444
https://doi.org/10.1137%2F140961444
https://doi.org/10.1093/acprof:oso/9780198508380.001.0001
https://doi.org/10.1093/acprof:oso/9780198508380.001.0001
https://doi.org/10.1145/3441850


BIBLIOGRAPHY 191

[74] R. Fletcher. On the Iterative Refinement of Least Squares Solutions. Journal

of the American Statistical Association, 70(349):109–112, March 1975. doi: 10.

1080/01621459.1975.10480270. URL https://doi.org/10.1080/01621459.1975.
10480270. 43, 57

[75] R. Fletcher. Conjugate gradient methods for indefinite systems. In Lecture Notes

in Mathematics, pages 73–89. Springer Berlin Heidelberg, 1976. doi: 10.1007/
bfb0080116. URL https://doi.org/10.1007%2Fbfb0080116. 37

[76] George E. Forsythe and Cleve B. Moler. Computer solution of linear algebraic systems.

1967. 43, 56

[77] Leslie Fox, Harry D. Huskey, and James H. Wilkinson. NOTES ON THE SOLUTION

OF ALGEBRAIC LINEAR SIMULTANEOUS EQUATIONS. The Quarterly Journal of Me-

chanics and Applied Mathematics, 1(1):149–173, January 1948. doi: 10.1093/qjmam/
1.1.149. URL https://doi.org/10.1093/qjmam/1.1.149. 41, 56

[78] Melina A. Freitag, Patrick Kürschner, and Jennifer Pestana. GMRES Convergence

Bounds for Eigenvalue Problems. Computational Methods in Applied Mathematics,

18(2):203–222, June 2017. doi: 10.1515/cmam-2017-0017. URL https://doi.org/
10.1515%2Fcmam-2017-0017. 93

[79] Keith O. Geddes and Wei Wei Zheng. Exploiting fast hardware floating point in high

precision computation. In Proceedings of the 2003 international symposium on Sym-

bolic and algebraic computation - ISSAC '03. ACM Press, 2003. doi: 10.1145/860854.

860886. URL https://doi.org/10.1145/860854.860886. 48, 56

[80] Alan George. Nested dissection of a regular finite element mesh. SIAM Journal on

Numerical Analysis, 10(2):345–363, 1973. doi: 10.1137/0710032. URL https://doi.
org/10.1137/0710032. 23, 25

[81] Pieter Ghysels, Xiaoye S. Li, François-Henry Rouet, Samuel Williams, and Artem

Napov. An Efficient Multicore Implementation of a Novel HSS-Structured Multi-

frontal Solver Using Randomized Sampling. SIAM Journal on Scientific Computing,

38(5):S358–S384, January 2016. doi: 10.1137/15m1010117. URL https://doi.org/
10.1137%2F15m1010117. 27

[82] Philip E. Gill, Michael A. Saunders, and Joseph R. Shinnerl. On the Stability

of Cholesky Factorization for Symmetric Quasidefinite Systems. SIAM Journal

on Matrix Analysis and Applications, 17(1):35–46, January 1996. doi: 10.1137/
s0895479893252623. URL https://doi.org/10.1137/s0895479893252623. 44,

56, 112

[83] Luc Giraud, Julien Langou, Miroslav Rozložník, and Jasper van den Eshof. Rounding

error analysis of the classical Gram-Schmidt orthogonalization process. Numerische

Mathematik, 101(1):87–100, May 2005. doi: 10.1007/s00211-005-0615-4. URL https:
//doi.org/10.1007/s00211-005-0615-4. 32

https://doi.org/10.1080/01621459.1975.10480270
https://doi.org/10.1080/01621459.1975.10480270
https://doi.org/10.1007%2Fbfb0080116
https://doi.org/10.1093/qjmam/1.1.149
https://doi.org/10.1515%2Fcmam-2017-0017
https://doi.org/10.1515%2Fcmam-2017-0017
https://doi.org/10.1145/860854.860886
https://doi.org/10.1137/0710032
https://doi.org/10.1137/0710032
https://doi.org/10.1137%2F15m1010117
https://doi.org/10.1137%2F15m1010117
https://doi.org/10.1137/s0895479893252623
https://doi.org/10.1007/s00211-005-0615-4
https://doi.org/10.1007/s00211-005-0615-4


192 BIBLIOGRAPHY

[84] Stefan L. Glimberg, Allan P. Engsig-Karup, and Morten G. Madsen. A Fast GPU-

Accelerated Mixed-Precision Strategy for Fully Nonlinear Water Wave Computations.

In Numerical Mathematics and Advanced Applications 2011, pages 645–652. Springer

Berlin Heidelberg, November 2012. doi: 10.1007/978-3-642-33134-3_68. URL https:
//doi.org/10.1007/978-3-642-33134-3_68. 48, 49, 57

[85] GNU. libquadmath. URL https://gcc.gnu.org/onlinedocs/libquadmath/
#toc-GNU-Free-Documentation-License-1. 8, 49

[86] Fritz Göbel, Thomas Grützmacher, Tobias Ribizel, and Hartwig Anzt. Mixed precision

incomplete and factorized sparse approximate inverse preconditioning on GPUs. In

Euro-Par 2021: Parallel Processing, pages 550–564. Springer International Publish-

ing, 2021. doi: 10.1007/978-3-030-85665-6_34. URL https://doi.org/10.1007/
978-3-030-85665-6_34. 12

[87] Dominik Goddeke and Robert Strzodka. Cyclic Reduction Tridiagonal Solvers on

GPUs Applied to Mixed-Precision Multigrid. IEEE Transactions on Parallel and

Distributed Systems, 22(1):22–32, January 2011. doi: 10.1109/tpds.2010.61. URL

https://doi.org/10.1109/tpds.2010.61. 48, 49, 57

[88] Dominik Göddeke, Robert Strzodka, and Stefan Turek. Performance and accuracy

of hardware-oriented native-, emulated- and mixed-precision solvers in FEM simu-

lations. International Journal of Parallel, Emergent and Distributed Systems, 22(4):

221–256, August 2007. doi: 10.1080/17445760601122076. URL https://doi.org/
10.1080/17445760601122076. 2, 48, 57, 66, 149

[89] Gene H. Golub. Numerical methods for solving linear least squares problems. Nu-

merische Mathematik, 7(3):206–216, June 1965. doi: 10.1007/bf01436075. URL

https://doi.org/10.1007/bf01436075. 43, 56, 57, 71

[90] Gene H. Golub. Matrix decompositions and statistical calculations. In Statisti-

cal Computation, pages 365–397. Elsevier, 1969. doi: 10.1016/b978-0-12-498150-8.

50021-5. URL https://doi.org/10.1016/b978-0-12-498150-8.50021-5. 43,

56, 57

[91] Gene H. Golub and Charles F. van Loan. Matrix Computations. JHU Press, third edi-

tion, 1996. URL http://www.cs.cornell.edu/cv/GVL4/golubandvanloan.htm.

45, 46, 56

[92] Gene H. Golub and James H. Wilkinson. Note on the iterative refinement of least

squares solution. Numerische Mathematik, 9(2):139–148, December 1966. doi: 10.

1007/bf02166032. URL https://doi.org/10.1007/bf02166032. 42, 43, 57, 71

[93] Willy Govaerts. Numerical Methods for Bifurcations of Dynamical Equilibria. Society

for Industrial and Applied Mathematics, January 2000. doi: 10.1137/1.9780898719543.

URL https://doi.org/10.1137/1.9780898719543. 44

https://doi.org/10.1007/978-3-642-33134-3_68
https://doi.org/10.1007/978-3-642-33134-3_68
https://gcc.gnu.org/onlinedocs/libquadmath/#toc-GNU-Free-Documentation-License-1
https://gcc.gnu.org/onlinedocs/libquadmath/#toc-GNU-Free-Documentation-License-1
https://doi.org/10.1007/978-3-030-85665-6_34
https://doi.org/10.1007/978-3-030-85665-6_34
https://doi.org/10.1109/tpds.2010.61
https://doi.org/10.1080/17445760601122076
https://doi.org/10.1080/17445760601122076
https://doi.org/10.1007/bf01436075
https://doi.org/10.1016/b978-0-12-498150-8.50021-5
http://www.cs.cornell.edu/cv/GVL4/golubandvanloan.htm
https://doi.org/10.1007/bf02166032
https://doi.org/10.1137/1.9780898719543


BIBLIOGRAPHY 193

[94] Willy Govaerts and John D. Pryce. Block elimination with one refinement solves

bordered linear systems accurately. BIT, 30(3):490–507, September 1990. doi: 10.

1007/bf01931663. URL https://doi.org/10.1007/bf01931663. 44, 56

[95] Stef Graillat, Fabienne Jézéquel, Théo Mary, and Roméo Molina. Adaptive precision

matrix-vector product. working paper or preprint, February 2022. URL https://
hal.archives-ouvertes.fr/hal-03561193. 150

[96] Serge Gratton, Ehouarn Simon, David Titley-Peloquin, and Philippe Toint. Exploiting

variable precision in GMRES. 2019. doi: 10.48550/ARXIV.1907.10550. URL https:
//arxiv.org/abs/1907.10550. 4, 12, 149, 151, 152, 153

[97] Anne Greenbaum, Vlastimil Pták, and Zdeněk Strakoš. Any Nonincreasing Con-

vergence Curve is Possible for GMRES. SIAM Journal on Matrix Analysis and Ap-

plications, 17(3):465–469, 1996. doi: 10.1137/S0895479894275030. URL https:
//doi.org/10.1137/S0895479894275030. 95, 156

[98] Mårten Gulliksson. Iterative refinement for constrained and weighted linear least

squares. BIT, 34(2):239–253, June 1994. doi: 10.1007/bf01955871. URL https://doi.
org/10.1007/bf01955871. 47, 57

[99] Anshul Gupta. A Shared- and distributed-memory parallel general sparse direct

solver. Applicable Algebra in Engineering, Communication and Computing, 18(3):

263–277, March 2007. doi: 10.1007/s00200-007-0037-x. URL https://doi.org/10.
1007%2Fs00200-007-0037-x. 26

[100] Dominik Göddeke, Robert Strzodka, and Stefan Turek. Accelerating double precision

fem simulations with gpus. 10 2005. 49, 57

[101] Azzam Haidar, Panruo Wu, Stanimire Tomov, and Jack Dongarra. Investigating Half

Precision Arithmetic to Accelerate Dense Linear System Solvers. In Proceedings of

the 8th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems,

ScalA ’17, New York, NY, USA, 2017. Association for Computing Machinery. ISBN

9781450351256. doi: 10.1145/3148226.3148237. URL https://doi.org/10.1145/
3148226.3148237. 52, 56, 57

[102] Azzam Haidar, Ahmad Abdelfattah, Mawussi Zounon, Panruo Wu, Srikara Pranesh,

Stanimire Tomov, and Jack Dongarra. The Design of Fast and Energy-Efficient Lin-

ear Solvers: On the Potential of Half-Precision Arithmetic and Iterative Refinement

Techniques. In Lecture Notes in Computer Science, pages 586–600. Springer In-

ternational Publishing, 2018. doi: 10.1007/978-3-319-93698-7_45. URL https:
//doi.org/10.1007/978-3-319-93698-7_45. 3, 52, 56, 57, 70, 80, 112

[103] Azzam Haidar, Stanimire Tomov, Jack Dongarra, and Nicholas J. Higham. Har-

nessing GPU Tensor Cores for Fast FP16 Arithmetic to Speed up Mixed-Precision

Iterative Refinement Solvers. In SC18: International Conference for High Perfor-

mance Computing, Networking, Storage and Analysis. IEEE, November 2018. doi:

https://doi.org/10.1007/bf01931663
https://hal.archives-ouvertes.fr/hal-03561193
https://hal.archives-ouvertes.fr/hal-03561193
https://arxiv.org/abs/1907.10550
https://arxiv.org/abs/1907.10550
https://doi.org/10.1137/S0895479894275030
https://doi.org/10.1137/S0895479894275030
https://doi.org/10.1007/bf01955871
https://doi.org/10.1007/bf01955871
https://doi.org/10.1007%2Fs00200-007-0037-x
https://doi.org/10.1007%2Fs00200-007-0037-x
https://doi.org/10.1145/3148226.3148237
https://doi.org/10.1145/3148226.3148237
https://doi.org/10.1007/978-3-319-93698-7_45
https://doi.org/10.1007/978-3-319-93698-7_45


194 BIBLIOGRAPHY

10.1109/sc.2018.00050. URL https://doi.org/10.1109/sc.2018.00050. 3, 12,

52, 56, 57, 70, 80, 91, 112

[104] Azzam Haidar, Harun Bayraktar, Stanimire Tomov, Jack Dongarra, and Nicholas J.

Higham. Mixed-precision iterative refinement using tensor cores on GPUs to ac-

celerate solution of linear systems. Proceedings of the Royal Society A: Mathemat-

ical, Physical and Engineering Sciences, 476(2243):20200110, November 2020. doi:

10.1098/rspa.2020.0110. URL https://doi.org/10.1098/rspa.2020.0110. 3, 52,

56, 57, 70, 80, 91, 93, 112, 149

[105] Harold V. Henderson and Shayle R. Searle. On Deriving the Inverse of a Sum of

Matrices. SIAM Review, 23(1):53–60, January 1981. doi: 10.1137/1023004. URL https:
//doi.org/10.1137%2F1023004. 87, 157

[106] John L Hennessy and David A Patterson. Computer architecture: a quantitative ap-

proach. Elsevier, 2011. 1

[107] Pascal Hénon, Pierre Ramet, and Jean Roman. PaStiX: a high-performance parallel

direct solver for sparse symmetric positive definite systems. Parallel Computing,

28(2):301–321, February 2002. doi: 10.1016/s0167-8191(01)00141-7. URL https:
//doi.org/10.1016%2Fs0167-8191%2801%2900141-7. 26

[108] Magnus R. Hestenes and Eduard Stiefel. Methods of conjugate gradients for solv-

ing linear systems. Journal of Research of the National Bureau of Standards, 49(6):

409, December 1952. doi: 10.6028/jres.049.044. URL https://doi.org/10.6028%
2Fjres.049.044. 37

[109] Desmond J. Higham, Nicholas J. Higham, and Srikara Pranesh. Random matrices

generating large growth in LU factorization with pivoting. 42(1):185–201, 2021. doi:

10.1137/20M1338149. 97

[110] Nicholas J. Higham. Fast Solution of Vandermonde-Like Systems Involving Or-

thogonal Polynomials. IMA Journal of Numerical Analysis, 8(4):473–486, 1988. doi:

10.1093/imanum/8.4.473. URL https://doi.org/10.1093/imanum/8.4.473. 44,

56

[111] Nicholas J. Higham. Stability Analysis of Algorithms for Solving Confluent

Vandermonde-Like Systems. SIAM Journal on Matrix Analysis and Applications, 11

(1):23–41, January 1990. doi: 10.1137/0611002. URL https://doi.org/10.1137/
0611002. 44, 56

[112] Nicholas J. Higham. Iterative refinement enhances the stability of QR factorization

methods for solving linear equations. BIT, 31(3):447–468, September 1991. doi: 10.

1007/bf01933262. URL https://doi.org/10.1007/bf01933262. 45, 56, 57

[113] Nicholas J. Higham. Iterative refinement for linear systems and LAPACK. IMA Journal

of Numerical Analysis, 17(4):495–509, October 1997. doi: 10.1093/imanum/17.4.495.

URL https://doi.org/10.1093/imanum/17.4.495. 45, 51, 56, 57

https://doi.org/10.1109/sc.2018.00050
https://doi.org/10.1098/rspa.2020.0110
https://doi.org/10.1137%2F1023004
https://doi.org/10.1137%2F1023004
https://doi.org/10.1016%2Fs0167-8191%2801%2900141-7
https://doi.org/10.1016%2Fs0167-8191%2801%2900141-7
https://doi.org/10.6028%2Fjres.049.044
https://doi.org/10.6028%2Fjres.049.044
https://doi.org/10.1093/imanum/8.4.473
https://doi.org/10.1137/0611002
https://doi.org/10.1137/0611002
https://doi.org/10.1007/bf01933262
https://doi.org/10.1093/imanum/17.4.495


BIBLIOGRAPHY 195

[114] Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms. So-

ciety for Industrial and Applied Mathematics, second edition, 2002. doi: 10.

1137/1.9780898718027. URL https://epubs.siam.org/doi/abs/10.1137/1.
9780898718027. 7, 15, 17, 18, 19, 20, 21, 46, 49, 51, 56, 57, 157

[115] Nicholas J. Higham. How fast is quadruple precision arithmetic? https://nhigham.
com/2017/08/31/how-fast-is-quadruple-precision-arithmetic/, June 2016.

8

[116] Nicholas J. Higham. Error analysis for standard and GMRES-based iterative refine-

ment in two and three-precisions. Technical Report 2019.19, November 2019. URL

http://eprints.maths.manchester.ac.uk/2735/. 88

[117] Nicholas J. Higham and Theo Mary. A new preconditioner that exploits low-rank

approximations to factorization error. SIAM Journal on Scientific Computing, 41

(1):A59–A82, 2019. doi: 10.1137/18M1182802. URL https://doi.org/10.1137/
18M1182802. 14

[118] Nicholas J. Higham and Theo Mary. Sharper probabilistic backward error analysis for

basic linear algebra kernels with random data. SIAM Journal on Scientific Computing,

42(5):A3427–A3446, 2020. doi: 10.1137/20M1314355. URL https://doi.org/10.
1137/20M1314355. 14

[119] Nicholas J. Higham and Theo Mary. Solving block low-rank linear systems by LU

factorization is numerically stable. IMA Journal of Numerical Analysis, 42(2):951–

980, April 2021. doi: 10.1093/imanum/drab020. URL https://doi.org/10.1093/
imanum/drab020. 28, 29, 119

[120] Nicholas J Higham and Théo Mary. Mixed precision algorithms in numerical

linear algebra. working paper or preprint, January 2022. URL https://hal.
archives-ouvertes.fr/hal-03537373. 12, 53

[121] Nicholas J. Higham and Srikara Pranesh. Exploiting lower precision arithmetic

in solving symmetric positive definite linear systems and least squares problems.

SIAM Journal on Scientific Computing, 43(1):A258–A277, January 2021. doi: 10.1137/
19m1298263. URL https://doi.org/10.1137/19m1298263. 52, 56, 57, 70, 80

[122] Nicholas J. Higham, Srikara Pranesh, and Mawussi Zounon. Squeezing a Matrix

into Half Precision, with an Application to Solving Linear Systems. SIAM Journal on

Scientific Computing, 41(4):A2536–A2551, January 2019. doi: 10.1137/18m1229511.

URL https://doi.org/10.1137/18m1229511. 11, 76, 100

[123] HITACHI. HD61810 Digital Signal Processor Users Manual. URL https://archive.
org/details/bitsavers_hitachidatlSignalProcessorUsersManual_
4735688/page/n1/mode/2up. [Online; accessed 7-July-2022]. 8

https://epubs.siam.org/doi/abs/10.1137/1.9780898718027
https://epubs.siam.org/doi/abs/10.1137/1.9780898718027
https://nhigham.com/2017/08/31/how-fast-is-quadruple-precision-arithmetic/
https://nhigham.com/2017/08/31/how-fast-is-quadruple-precision-arithmetic/
http://eprints.maths.manchester.ac.uk/2735/
https://doi.org/10.1137/18M1182802
https://doi.org/10.1137/18M1182802
https://doi.org/10.1137/20M1314355
https://doi.org/10.1137/20M1314355
https://doi.org/10.1093/imanum/drab020
https://doi.org/10.1093/imanum/drab020
https://hal.archives-ouvertes.fr/hal-03537373
https://hal.archives-ouvertes.fr/hal-03537373
https://doi.org/10.1137/19m1298263
https://doi.org/10.1137/18m1229511
https://archive.org/details/bitsavers_hitachidatlSignalProcessorUsersManual_4735688/page/n1/mode/2up
https://archive.org/details/bitsavers_hitachidatlSignalProcessorUsersManual_4735688/page/n1/mode/2up
https://archive.org/details/bitsavers_hitachidatlSignalProcessorUsersManual_4735688/page/n1/mode/2up


196 BIBLIOGRAPHY

[124] Jonathan D. Hogg and Jennifer A. Scott. A Fast and Robust Mixed-Precision Solver

for the Solution of Sparse Symmetric Linear Systems. ACM Transactions on Mathe-

matical Software, 37(2), April 2010. ISSN 0098-3500. doi: 10.1145/1731022.1731027.

URL https://doi.org/10.1145/1731022.1731027. 48, 56, 112, 150, 152

[125] HPL-AI. HPL-AI Mixed-Precision Benchmark. URL https://hpl-ai.org/. 52

[126] Pascal Hénon, Pierre Ramet, and Jean Roman. A mapping and scheduling algorithm

for parallel sparse fan-in numerical factorization. pages 1059–1067, 08 1999. doi:

10.1007/3-540-48311-X_148. 46, 120

[127] IBM. IBM advances against x86 with Power9. URL https://www.hpcwire.com/
2016/08/30/ibm-unveils-power9-details/. 8

[128] IEEE Computer Society. IEEE Standard for Floating-Point Arithmetic. IEEE Std

754-2019 (Revision of IEEE 754-2008), pages 1–84, 2019. doi: 10.1109/IEEESTD.2019.

8766229. 7, 8, 41

[129] Ilse Ipsen, Petros Drineas, and Christos Boutsikas. An attempt at explaining why ma-

trices can be better conditioned in lower precision. Talk given at workshop “Advances

in Numerical Linear Algebra: Celebrating the 60th Birthday of Nick Higham”, Manch-

ester. UK, July 2022. URL https://www.youtube.com/watch?v=unyuQXi0qlo. 85

[130] Michal Jankowski and Henryk Woźniakowski. Iterative refinement implies numerical

stability. BIT, 17(3):303–311, September 1977. doi: 10.1007/bf01932150. URL https:
//doi.org/10.1007/bf01932150. 44, 45, 46, 56, 57, 62

[131] Michal Jankowski and Henryk Woźniakowski. The accurate solution of certain contin-

uous problems using only single precision arithmetic. BIT, 25(4):635–651, December

1985. doi: 10.1007/bf01936142. URL https://doi.org/10.1007/bf01936142. 44,

57

[132] William Kahan. Writeups of library tape subroutines LEQU, LEQUN, FLEQU, CLEQU

and DLEQU. Institute of Computer Science, University of Toronto, 1965. 42, 56

[133] George Karypis. M ETI S – A Software Package for Partitioning Unstructured Graphs,

Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices –

Version 5.1.0. University of Minnesota, March 2013. 121

[134] George Karypis and Vipin Kumar. METIS—A Software Package for Partitioning Un-

structured Graphs, Partitioning Meshes and Computing Fill-Reducing Ordering of

Sparse Matrices. 01 1997. 23

[135] Andrzej Kiełbasiński. Iterative refinement for linear systems in variable-precision

arithmetic. BIT, 21(1):97–103, March 1981. doi: 10.1007/bf01934074. URL https:
//doi.org/10.1007/bf01934074. 46, 53, 56, 61, 80

https://doi.org/10.1145/1731022.1731027
https://hpl-ai.org/
https://www.hpcwire.com/2016/08/30/ibm-unveils-power9-details/
https://www.hpcwire.com/2016/08/30/ibm-unveils-power9-details/
https://www.youtube.com/watch?v=unyuQXi0qlo
https://doi.org/10.1007/bf01932150
https://doi.org/10.1007/bf01932150
https://doi.org/10.1007/bf01936142
https://doi.org/10.1007/bf01934074
https://doi.org/10.1007/bf01934074


BIBLIOGRAPHY 197

[136] Jakub Kurzak and Jack Dongarra. Implementation of mixed precision in solving

systems of linear equations on the Cell processor. Concurrency and Computation:

Practice and Experience, 19(10):1371–1385, 2007. doi: 10.1002/cpe.1164. URL https:
//doi.org/10.1002/cpe.1164. 49, 56

[137] Julie Langou, Julien Langou, Piotr Luszczek, Jakub Kurzak, Alfredo Buttari, and Jack

Dongarra. Exploiting the performance of 32 bit floating point arithmetic in obtaining

64 bit accuracy (revisiting iterative refinement for linear systems). In ACM/IEEE

SC 2006 Conference (SC'06). IEEE, November 2006. doi: 10.1109/sc.2006.30. URL

https://doi.org/10.1109/sc.2006.30. 2, 11, 48, 51, 56, 66

[138] Jun Kyu Lee and Gregory D. Peterson. Iterative Refinement on FPGAs. In 2011 Sym-

posium on Application Accelerators in High-Performance Computing. IEEE, July 2011.

doi: 10.1109/saahpc.2011.19. URL https://doi.org/10.1109/saahpc.2011.19.

49, 56

[139] JunKyu Lee, Hans Vandierendonck, Mahwish Arif, Gregory D. Peterson, and Dim-

itrios S. Nikolopoulos. Energy-Efficient Iterative Refinement Using Dynamic Preci-

sion. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 8(4):722–

735, December 2018. doi: 10.1109/jetcas.2018.2850665. URL https://doi.org/10.
1109/jetcas.2018.2850665. 53, 56, 57

[140] JunKyu Lee, Gregory D. Peterson, Dimitrios S. Nikolopoulos, and Hans Vandieren-

donck. AIR: Iterative refinement acceleration using arbitrary dynamic precision.

Parallel Computing, 97:102663, September 2020. doi: 10.1016/j.parco.2020.102663.

URL https://doi.org/10.1016/j.parco.2020.102663. 53, 56, 80

[141] Jean-Yves L’Excellent. Multifrontal Methods: Parallelism, Memory Usage and Nu-

merical Aspects. Habilitation à diriger des recherches, Ecole normale supérieure de

lyon - ENS LYON, September 2012. URL https://tel.archives-ouvertes.fr/
tel-00737751. 21

[142] Jean-Yves L’Excellent and Wissam M. Sid-Lakhdar. A study of shared-memory paral-

lelism in a multifrontal solver. Parallel Computing, 40(3-4):34–46, March 2014. doi:

10.1016/j.parco.2014.02.003. URL https://doi.org/10.1016%2Fj.parco.2014.
02.003. 121, 144

[143] Xiaoye S. Li and James W. Demmel. Making Sparse Gaussian Elimination Scalable

by Static Pivoting. In Proceedings of the IEEE/ACM SC98 Conference. IEEE, 1998. doi:

10.1109/sc.1998.10030. URL https://doi.org/10.1109%2Fsc.1998.10030. 26,

29, 44, 56, 112

[144] Xiaoye S. Li and James W. Demmel. SuperLU_DIST. ACM Transactions on Math-

ematical Software, 29(2):110–140, June 2003. doi: 10.1145/779359.779361. URL

https://doi.org/10.1145%2F779359.779361. 26

https://doi.org/10.1002/cpe.1164
https://doi.org/10.1002/cpe.1164
https://doi.org/10.1109/sc.2006.30
https://doi.org/10.1109/saahpc.2011.19
https://doi.org/10.1109/jetcas.2018.2850665
https://doi.org/10.1109/jetcas.2018.2850665
https://doi.org/10.1016/j.parco.2020.102663
https://tel.archives-ouvertes.fr/tel-00737751
https://tel.archives-ouvertes.fr/tel-00737751
https://doi.org/10.1016%2Fj.parco.2014.02.003
https://doi.org/10.1016%2Fj.parco.2014.02.003
https://doi.org/10.1109%2Fsc.1998.10030
https://doi.org/10.1145%2F779359.779361


198 BIBLIOGRAPHY

[145] Xiaoye S. Li, James W. Demmel, David H. Bailey, Greg Henry, Yozo Hida, Jimmy

Iskandar, William Kahan, Suh Y. Kang, Anil Kapur, Michael C. Martin, Brandon J.

Thompson, Teresa Tung, and Daniel J. Yoo. Design, Implementation and Testing

of Extended and Mixed Precision BLAS. ACM Transactions on Mathematical Soft-

ware, 28(2):152–205, June 2002. ISSN 0098-3500. doi: 10.1145/567806.567808. URL

https://doi.org/10.1145/567806.567808. 8, 49

[146] Cedric Lichtenau, Steven Carlough, and Silvia Melitta Mueller. Quad Precision Float-

ing Point on the IBM z13. In 2016 IEEE 23nd Symposium on Computer Arithmetic

(ARITH). IEEE, July 2016. doi: 10.1109/arith.2016.26. URL https://doi.org/10.
1109/arith.2016.26. 8

[147] Neil Lindquist, Piotr Luszczek, and Jack Dongarra. Improving the Performance of

the GMRES Method Using Mixed-Precision Techniques. In Communications in

Computer and Information Science, pages 51–66. Springer International Publish-

ing, 2020. doi: 10.1007/978-3-030-63393-6_4. URL https://doi.org/10.1007/
978-3-030-63393-6_4. 53, 57, 150, 152

[148] Neil Lindquist, Piotr Luszczek, and Jack Dongarra. Accelerating Restarted GMRES

With Mixed Precision Arithmetic. IEEE Transactions on Parallel and Distributed

Systems, 33(4):1027–1037, April 2022. doi: 10.1109/tpds.2021.3090757. URL https:
//doi.org/10.1109/tpds.2021.3090757. 53, 57, 70, 150, 152

[149] Joseph W. H. Liu. Modification of the minimum-degree algorithm by multiple elimi-

nation. ACM Transactions on Mathematical Software, 11(2):141–153, June 1985. doi:

10.1145/214392.214398. URL https://doi.org/10.1145%2F214392.214398. 23

[150] Joseph W. H. Liu. The Multifrontal Method for Sparse Matrix Solution: Theory and

Practice. SIAM Review, 34(1):82–109, March 1992. doi: 10.1137/1034004. URL https:
//doi.org/10.1137%2F1034004. 21

[151] Jennifer A. Loe, Christian A. Glusa, Ichitaro Yamazaki, Erik G. Boman, and

Sivasankaran Rajamanickam. Experimental Evaluation of Multiprecision Strate-

gies for GMRES on GPUs. 2021. doi: 10.48550/ARXIV.2105.07544. URL https:
//arxiv.org/abs/2105.07544. 53, 57, 150, 151, 152, 153

[152] Jennifer A. Loe, Christian A. Glusa, Ichitaro Yamazaki, Erik G. Boman, and

Sivasankaran Rajamanickam. A Study of Mixed Precision Strategies for GMRES on

GPUs. 2021. doi: 10.48550/ARXIV.2109.01232. URL https://arxiv.org/abs/2109.
01232. 53, 57, 70, 150, 151, 152

[153] Florent Lopez and Théo Mary. Mixed Precision LU Factorization on GPU Tensor

Cores: Reducing Data Movement and Memory Footprint. September 2020. URL

https://hal.archives-ouvertes.fr/hal-02937325. working paper or preprint.

12, 52

https://doi.org/10.1145/567806.567808
https://doi.org/10.1109/arith.2016.26
https://doi.org/10.1109/arith.2016.26
https://doi.org/10.1007/978-3-030-63393-6_4
https://doi.org/10.1007/978-3-030-63393-6_4
https://doi.org/10.1109/tpds.2021.3090757
https://doi.org/10.1109/tpds.2021.3090757
https://doi.org/10.1145%2F214392.214398
https://doi.org/10.1137%2F1034004
https://doi.org/10.1137%2F1034004
https://arxiv.org/abs/2105.07544
https://arxiv.org/abs/2105.07544
https://arxiv.org/abs/2109.01232
https://arxiv.org/abs/2109.01232
https://hal.archives-ouvertes.fr/hal-02937325


BIBLIOGRAPHY 199

[154] Florent Lopez and Theo Mary. Mixed Precision LU Factorization on GPU Ten-

sor Cores: Reducing Data Movement and Memory Footprint, 2021. URL http:
//eprints.maths.manchester.ac.uk/2782/. MIMS EPrint 2020.20, Manchester

Institute for Mathematical Sciences, The University of Manchester, UK, September

2020. 112

[155] NAG Ltd. NAG Fortran Library Manual, 2005. 50

[156] Magma. Matrix algebra on GPU and multicore architectures (MAGMA). http://
icl.cs.utk.edu/magma/. 52, 80

[157] Rawlyn R. M. Mallock. An electrical calculating machine. Proceedings of the

Royal Society of London. Series A, Containing Papers of a Mathematical and Phys-

ical Character, 140(841):457–483, May 1933. doi: 10.1098/rspa.1933.0081. URL

https://doi.org/10.1098/rspa.1933.0081. 40

[158] Roger S. Martin, G. Peters, and James H. Wilkinson. Iterative refinement of the

solution of a positive definite system of equations. In Linear Algebra, pages 31–

44. Springer Berlin Heidelberg, 1971. doi: 10.1007/978-3-662-39778-7_2. URL

https://doi.org/10.1007/978-3-662-39778-7_2. 42, 56

[159] Théo Mary. Block low-rank multifrontal solvers : complexity, performance, and

scalability. Theses, Université Paul Sabatier - Toulouse III, November 2017. URL

https://tel.archives-ouvertes.fr/tel-01929478. 21, 27

[160] Stephen F. McCormick, Joseph Benzaken, and Rasmus Tamstorf. Algebraic Error

Analysis for Mixed-Precision Multigrid Solvers. SIAM Journal on Scientific Computing,

43(5):S392–S419, January 2021. doi: 10.1137/20m1348571. URL https://doi.org/
10.1137/20m1348571. 53, 57, 149

[161] Cleve B. Moler. SOLVE, Accurate simultaneous linear equation solver with iterative

improvement. SHARE Distribution No. 3194, 1964. 42, 56

[162] Cleve B. Moler. Iterative refinement in floating point. Journal of the ACM, 14(2):316–

321, April 1967. doi: 10.1145/321386.321394. URL https://doi.org/10.1145/
321386.321394. 42, 56

[163] Netlib. LAPACK. URL https://www.netlib.org/lapack/. 46

[164] Esmond G. Ng and Padma Raghavan. Performance of Greedy Ordering Heuristics for

Sparse Cholesky Factorization. SIAM Journal on Matrix Analysis and Applications,

20(4):902–914, January 1999. doi: 10.1137/s0895479897319313. URL https://doi.
org/10.1137%2Fs0895479897319313. 23

[165] Steven A. Niederer, Eric Kerfoot, Alan P. Benson, Miguel O. Bernabeu, Olivier Bernus,

Chris Bradley, Elizabeth M. Cherry, Richard Clayton, Flavio H. Fenton, Alan Garny,

Elvio Heidenreich, Sander Land, Mary Maleckar, Pras Pathmanathan, Gernot Plank,

José F. Rodríguez, Ishani Roy, Frank B. Sachse, Gunnar Seemann, Ola Skavhaug,

http://eprints.maths.manchester.ac.uk/2782/
http://eprints.maths.manchester.ac.uk/2782/
http://icl.cs.utk.edu/magma/
http://icl.cs.utk.edu/magma/
https://doi.org/10.1098/rspa.1933.0081
https://doi.org/10.1007/978-3-662-39778-7_2
https://tel.archives-ouvertes.fr/tel-01929478
https://doi.org/10.1137/20m1348571
https://doi.org/10.1137/20m1348571
https://doi.org/10.1145/321386.321394
https://doi.org/10.1145/321386.321394
https://www.netlib.org/lapack/
https://doi.org/10.1137%2Fs0895479897319313
https://doi.org/10.1137%2Fs0895479897319313


200 BIBLIOGRAPHY

and Nic P. Smith. Verification of cardiac tissue electrophysiology simulators us-

ing an N -version benchmark. Philosophical Transactions of the Royal Society A:

Mathematical, Physical and Engineering Sciences, 369(1954):4331–4351, 2011. doi:

10.1098/rsta.2011.0139. URL https://royalsocietypublishing.org/doi/abs/
10.1098/rsta.2011.0139. 122

[166] Thomas Norrie, Nishant Patil, Doe Hyun Yoon, George Kurian, Sheng Li, James

Laudon, Cliff Young, Norman Jouppi, and David Patterson. The Design Process for

Google’s Training Chips: TPUv2 and TPUv3. IEEE Micro, 41(2):56–63, March 2021. doi:

10.1109/mm.2021.3058217. URL https://doi.org/10.1109/mm.2021.3058217. 9

[167] NVIDIA. NVIDIA Hopper Architecture, . URL https://developer.nvidia.com/
blog/nvidia-hopper-architecture-in-depth/. 9

[168] NVIDIA. tensorfloat-32, . URL https://blogs.nvidia.com/blog/2020/05/14/
tensorfloat-32-precision-format/. 9

[169] NVIDIA, 2019. URL https://docs.nvidia.com/cuda/cusolver/. 52, 80

[170] Takeshi Ogita. Accurate matrix factorization: Inverse LU and inverse QR factoriza-

tions. 31(5):2477–2497, 2010. doi: 10.1137/090754376. 99

[171] Eda Oktay and Erin Carson. Multistage mixed precision iterative refinement. Nu-

merical Linear Algebra with Applications, February 2022. doi: 10.1002/nla.2434. URL

https://doi.org/10.1002/nla.2434. 53, 56, 57, 61, 65, 105, 151, 152

[172] Eda Oktay and Erin Carson. Mixed Precision GMRES-based Iterative Refinement

with Recycling. 2022. doi: 10.48550/ARXIV.2201.09827. URL https://arxiv.org/
abs/2201.09827. 52, 56, 57, 93, 151, 152, 153

[173] Kyaw L. Oo and Andreas Vogel. Accelerating Geometric Multigrid Preconditioning

with Half-Precision Arithmetic on GPUs. 2020. doi: 10.48550/ARXIV.2007.07539. URL

https://arxiv.org/abs/2007.07539. 53, 57, 149

[174] Christopher C. Paige and Michael A. Saunders. Solution of sparse indefinite systems

of linear equations. SIAM Journal on Numerical Analysis, 12(4):617–629, September

1975. doi: 10.1137/0712047. URL https://doi.org/10.1137%2F0712047. 37

[175] Christopher C. Paige and Michael A. Saunders. LSQR: An algorithm for sparse linear

equations and sparse least squares. ACM Transactions on Mathematical Software,

8(1):43–71, March 1982. doi: 10.1145/355984.355989. URL https://doi.org/10.
1145/355984.355989. 38

[176] Christopher C. Paige, Miroslav Rozlozník, and Zdeněk Strakoš. Modified Gram-

Schmidt (MGS), Least Squares, and Backward Stability of MGS-GMRES. SIAM Jour-

nal on Matrix Analysis and Applications, 28(1):264–284, January 2006. doi: 10.1137/
050630416. URL https://doi.org/10.1137/050630416. 33, 69, 82, 83, 84, 110, 155,

207, 208, 209, 210, 211, 212, 213, 214

https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2011.0139
https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2011.0139
https://doi.org/10.1109/mm.2021.3058217
https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/
https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/
https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/
https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/
https://docs.nvidia.com/cuda/cusolver/
https://doi.org/10.1002/nla.2434
https://arxiv.org/abs/2201.09827
https://arxiv.org/abs/2201.09827
https://arxiv.org/abs/2007.07539
https://doi.org/10.1137%2F0712047
https://doi.org/10.1145/355984.355989
https://doi.org/10.1145/355984.355989
https://doi.org/10.1137/050630416


BIBLIOGRAPHY 201

[177] Grégoire Pichon, Eric Darve, Mathieu Faverge, Pierre Ramet, and Jean Roman. Sparse

supernodal solver using block low-rank compression: Design, performance and anal-

ysis. Journal of Computational Science, 27:255–270, July 2018. doi: 10.1016/j.jocs.2018.

06.007. URL https://doi.org/10.1016%2Fj.jocs.2018.06.007. 27

[178] Gregorio Quintana-Ortí, Enrique S. Quintana-Ortí, Robert A. Van De Geijn, Field

G. Van Zee, and Ernie Chan. Programming matrix algorithms-by-blocks for thread-

level parallelism. ACM Transactions on Mathematical Software, 36(3):1–26, July

2009. doi: 10.1145/1527286.1527288. URL https://doi.org/10.1145%2F1527286.
1527288. 17

[179] J. L. Rigal and J. Gaches. On the compatibility of a given solution with the data of

a linear system. Journal of the ACM, 14(3):543–548, July 1967. doi: 10.1145/321406.

321416. URL https://doi.org/10.1145%2F321406.321416. 13

[180] Edward Rothberg and Stanley C. Eisenstat. Node Selection Strategies for Bottom-Up

Sparse Matrix Ordering. SIAM Journal on Matrix Analysis and Applications, 19(3):

682–695, July 1998. doi: 10.1137/s0895479896302692. URL https://doi.org/10.
1137%2Fs0895479896302692. 23

[181] Siegfried M Rump. Inversion of extremely ill-conditioned matrices in floating-point.

Japan Journal of Industrial and Applied Mathematics, 26(2-3):249–277, 2009. 99

[182] Youcef Saad. Krylov subspace methods for solving large unsymmetric lin-

ear systems. Mathematics of Computation, 37(155):105–126, 1981. doi:

10.1090/s0025-5718-1981-0616364-6. URL https://doi.org/10.1090/
s0025-5718-1981-0616364-6. 37

[183] Youcef Saad. A flexible inner-outer preconditioned GMRES algorithm. SIAM Journal

on Scientific Computing, 14(2):461–469, March 1993. doi: 10.1137/0914028. URL

https://doi.org/10.1137/0914028. 35

[184] Youcef Saad and Martin H. Schultz. GMRES: A Generalized Minimal Residual Al-

gorithm for Solving Nonsymmetric Linear Systems. SIAM Journal on Scientific

and Statistical Computing, 7(3):856–869, July 1986. doi: 10.1137/0907058. URL

https://doi.org/10.1137%2F0907058. 30

[185] Yousef Saad. ILUT: A dual threshold incomplete LU factorization. Numerical Linear

Algebra with Applications, 1(4):387–402, July 1994. doi: 10.1002/nla.1680010405. URL

https://doi.org/10.1002%2Fnla.1680010405. 119

[186] Olaf Schenk, Klaus Gärtner, and Wolfgang Fichtner. Efficient Sparse LU Factorization

with Left-Right Looking Strategy on Shared Memory Multiprocessors. Bit Numerical

Mathematics, 40(1):158–176, 2000. doi: 10.1023/a:1022326604210. URL https://
doi.org/10.1023/a:1022326604210. 26, 120

https://doi.org/10.1016%2Fj.jocs.2018.06.007
https://doi.org/10.1145%2F1527286.1527288
https://doi.org/10.1145%2F1527286.1527288
https://doi.org/10.1145%2F321406.321416
https://doi.org/10.1137%2Fs0895479896302692
https://doi.org/10.1137%2Fs0895479896302692
https://doi.org/10.1090/s0025-5718-1981-0616364-6
https://doi.org/10.1090/s0025-5718-1981-0616364-6
https://doi.org/10.1137/0914028
https://doi.org/10.1137%2F0907058
https://doi.org/10.1002%2Fnla.1680010405
https://doi.org/10.1023/a:1022326604210
https://doi.org/10.1023/a:1022326604210


202 BIBLIOGRAPHY

[187] Robert Schreiber. A New Implementation of Sparse Gaussian Elimination. ACM

Transactions on Mathematical Software, 8(3):256–276, September 1982. doi: 10.1145/
356004.356006. URL https://doi.org/10.1145%2F356004.356006. 21, 22

[188] Daniil V. Shantsev, Piyoosh Jaysaval, Sébastien de la Kethulle de Ryhove, Patrick R.

Amestoy, Alfredo Buttari, Jean-Yves L’Excellent, and Theo Mary. Large-scale 3-D EM

modelling with a Block Low-Rank multifrontal direct solver. Geophysical Journal

International, 209(3):1558–1571, March 2017. doi: 10.1093/gji/ggx106. URL https:
//doi.org/10.1093%2Fgji%2Fggx106. 27

[189] Valeria Simoncini and Daniel B. Szyld. Recent computational developments in krylov

subspace methods for linear systems. Numerical Linear Algebra with Applications, 14

(1):1–59, 2007. doi: https://doi.org/10.1002/nla.499. URL https://onlinelibrary.
wiley.com/doi/abs/10.1002/nla.499. 95

[190] Robert D. Skeel. Scaling for Numerical Stability in Gaussian Elimination. Journal of

the ACM, 26(3):494–526, July 1979. doi: 10.1145/322139.322148. URL https://doi.
org/10.1145/322139.322148. 44

[191] Robert D. Skeel. Iterative refinement implies numerical stability for gaus-

sian elimination. Mathematics of Computation, 35(151):817–832, 1980. doi:

10.1090/s0025-5718-1980-0572859-4. URL https://doi.org/10.1090/
s0025-5718-1980-0572859-4. 44, 45, 56

[192] Alicja Smoktunowicz and Jolanta Sokolnicka. Binary cascades iterative refinement

in doubled-mantissa arithmetics. BIT, 24(1):123–127, March 1984. doi: 10.1007/
bf01934524. URL https://doi.org/10.1007/bf01934524. 46, 53, 57

[193] Alicja Smoktunowicz and Jolanta Sokolnicka. Solving the linear least squares problem

with very high relative accuracy. Computing, 45(4):345–354, December 1990. doi:

10.1007/bf02238802. URL https://doi.org/10.1007/bf02238802. 46, 57

[194] James N. Snyder. On the improvement of the solutions to a set of simultaneous linear

equations using the ILLIAC. Mathematical Tables and Other Aids to Computation,

9(52):177, October 1955. doi: 10.2307/2002054. URL https://doi.org/10.2307/
2002054. 42, 56

[195] Peter Sonneveld. CGS, a fast lanczos-type solver for nonsymmetric linear systems.

SIAM Journal on Scientific and Statistical Computing, 10(1):36–52, January 1989. doi:

10.1137/0910004. URL https://doi.org/10.1137%2F0910004. 37

[196] Gilbert W. Stewart. Introduction to matrix computations. Computer science and

applied mathematics. Academic Press, New York, 1973. ISBN 0126703507. 43, 56, 57

[197] Rita Streich, Christoph Schwarzbach, Michael Becken, and Klaus Spitzer. Controlled-

source Electromagnetic Modelling Studies – Utility of Auxiliary Potentials for Low-

frequency Stabilization. Conference Proceedings, 72nd EAGE Conference, (cp-161-

00065), 2010. ISSN 2214-4609. doi: https://doi.org/10.3997/2214-4609.201400657.

https://doi.org/10.1145%2F356004.356006
https://doi.org/10.1093%2Fgji%2Fggx106
https://doi.org/10.1093%2Fgji%2Fggx106
https://onlinelibrary.wiley.com/doi/abs/10.1002/nla.499
https://onlinelibrary.wiley.com/doi/abs/10.1002/nla.499
https://doi.org/10.1145/322139.322148
https://doi.org/10.1145/322139.322148
https://doi.org/10.1090/s0025-5718-1980-0572859-4
https://doi.org/10.1090/s0025-5718-1980-0572859-4
https://doi.org/10.1007/bf01934524
https://doi.org/10.1007/bf02238802
https://doi.org/10.2307/2002054
https://doi.org/10.2307/2002054
https://doi.org/10.1137%2F0910004


BIBLIOGRAPHY 203

URL https://www.earthdoc.org/content/papers/10.3997/2214-4609.
201400657. 123

[198] Robert Strzodka and Dominik Göddeke. Mixed precision methods for convergent iter-

ative schemes. pages D–59–60, May 2006. URL http://asc.ziti.uni-heidelberg.
de/sites/default/files/research/papers/public/StGo06convIter.pdf.

48, 57, 66

[199] Robert Strzodka and Dominik Göddeke. Pipelined Mixed Precision Algorithms on

FPGAs for Fast and Accurate PDE Solvers from Low Precision Components. In 2006

14th Annual IEEE Symposium on Field-Programmable Custom Computing Machines.

IEEE, April 2006. doi: 10.1109/fccm.2006.57. URL https://doi.org/10.1109/
fccm.2006.57. 48, 49, 57, 150, 152

[200] Yuki Sumiyoshi, Akihiro Fujii, Akira Nukada, and Teruo Tanaka. Mixed-Precision

AMG Method for Many Core Accelerators. In Proceedings of the 21st European MPI

Users’ Group Meeting, EuroMPI/ASIA ’14, page 127–132, New York, NY, USA, 2014.

Association for Computing Machinery. ISBN 9781450328753. doi: 10.1145/2642769.

2642794. URL https://doi.org/10.1145/2642769.2642794. 48, 49, 57

[201] Junqing Sun, Gregory D. Peterson, and Olaf O. Storaasli. High-Performance Mixed-

Precision Linear Solver for FPGAs. IEEE Transactions on Computers, 57(12):1614–

1623, December 2008. doi: 10.1109/tc.2008.89. URL https://doi.org/10.1109%
2Ftc.2008.89. 49, 56

[202] Rasmus Tamstorf, Joseph Benzaken, and Stephen F. McCormick. Discretization-Error-

Accurate Mixed-Precision Multigrid Solvers. SIAM Journal on Scientific Computing,

43(5):S420–S447, January 2021. doi: 10.1137/20m1349230. URL https://doi.org/
10.1137/20m1349230. 53, 57

[203] Pascal Theissen, Kirstin Heuler, Rainer Demuth, Johannes Wojciak, Thomas Indinger,

and Nikolaus Adams. Experimental Investigation of Unsteady Vehicle Aerodynamics

under Time-Dependent Flow Conditions - Part 1. In SAE 2011 World Congress &

Exhibition. SAE International, April 2011. doi: https://doi.org/10.4271/2011-01-0177.

URL https://doi.org/10.4271/2011-01-0177. 123

[204] Françoise Tisseur. Newton’s Method in Floating Point Arithmetic and Iterative Re-

finement of Generalized Eigenvalue Problems. SIAM Journal on Matrix Analysis and

Applications, 22(4):1038–1057, January 2001. doi: 10.1137/s0895479899359837. URL

https://doi.org/10.1137/s0895479899359837. 50, 57

[205] D. Titley-Peloquin, J. Pestana, and A. J. Wathen. GMRES convergence bounds that

depend on the right-hand-side vector. IMA Journal of Numerical Analysis, 34(2):462–

479, July 2013. doi: 10.1093/imanum/drt025. URL https://doi.org/10.1093%
2Fimanum%2Fdrt025. 93

https://www.earthdoc.org/content/papers/10.3997/2214-4609.201400657
https://www.earthdoc.org/content/papers/10.3997/2214-4609.201400657
http://asc.ziti.uni-heidelberg.de/sites/default/files/research/papers/public/StGo06convIter.pdf
http://asc.ziti.uni-heidelberg.de/sites/default/files/research/papers/public/StGo06convIter.pdf
https://doi.org/10.1109/fccm.2006.57
https://doi.org/10.1109/fccm.2006.57
https://doi.org/10.1145/2642769.2642794
https://doi.org/10.1109%2Ftc.2008.89
https://doi.org/10.1109%2Ftc.2008.89
https://doi.org/10.1137/20m1349230
https://doi.org/10.1137/20m1349230
https://doi.org/10.4271/2011-01-0177
https://doi.org/10.1137/s0895479899359837
https://doi.org/10.1093%2Fimanum%2Fdrt025
https://doi.org/10.1093%2Fimanum%2Fdrt025


204 BIBLIOGRAPHY

[206] Kathryn Turner and Homer F. Walker. Efficient High Accuracy Solutions with GM-

RES(m). SIAM Journal on Scientific and Statistical Computing, 13(3):815–825, May

1992. doi: 10.1137/0913048. URL https://doi.org/10.1137/0913048. 2, 4, 46, 48,

53, 57, 70, 149, 150, 152

[207] Henk A. van der Vorst. Bi-CGSTAB: A fast and smoothly converging variant of bi-

CG for the solution of nonsymmetric linear systems. SIAM Journal on Scientific and

Statistical Computing, 13(2):631–644, March 1992. doi: 10.1137/0913035. URL https:
//doi.org/10.1137%2F0913035. 37

[208] John von Neumann and Herman H. Goldstine. Numerical inverting of matrices

of high order. Bulletin of the American Mathematical Society, 53(11):1021–1099,

1947. doi: 10.1090/s0002-9904-1947-08909-6. URL https://doi.org/10.1090/
s0002-9904-1947-08909-6. 40, 41

[209] Homer F. Walker. Implementation of the GMRES Method Using Householder Trans-

formations. SIAM Journal on Scientific and Statistical Computing, 9(1):152–163, Jan-

uary 1988. doi: 10.1137/0909010. URL https://doi.org/10.1137/0909010. 33

[210] Wikipedia. GeForce FX series — Wikipedia, The Free Encyclopedia, . 8

[211] Wikipedia. IBM 700/7000 series — Wikipedia, The Free Encyclopedia, . 40

[212] Wikipedia. English Electric KDF9 — Wikipedia, The Free Encyclopedia, . 42

[213] James H. Wilkinson. Progress report on the Automatic Computing Engine. Re-

port MA/17/1024, Mathematics Division, Department of Scientific and Industrial

Research, National Physical Laboratory, April 1948. URL http://www.alanturing.
net/turing_archive/archive/l/l10/l10.php. 2, 40, 41, 56

[214] James H. Wilkinson. Rounding Errors in Algebraic Processes. Notes on Applied Science

No. 32, Her Majesty’s Stationery Office, London, 1963. ISBN 0-486-67999-3. Also

published by Prentice-Hall, Englewood Cliffs, NJ, USA. Reprinted by Dover, New York,

1994. 41, 42, 56

[215] Ichitaro Yamazaki, Stanimire Tomov, Tingxing Dong, and Jack Dongarra. Mixed-

precision orthogonalization scheme and adaptive step size for improving the stability

and performance of CA-GMRES on GPUs. In Lecture Notes in Computer Science, pages

17–30. Springer International Publishing, 2015. doi: 10.1007/978-3-319-17353-5_2.

URL https://doi.org/10.1007/978-3-319-17353-5_2. 150

[216] Mihalis Yannakakis. Computing the Minimum Fill-In is NP-Complete. SIAM Journal

on Algebraic Discrete Methods, 2(1):77–79, March 1981. doi: 10.1137/0602010. URL

https://doi.org/10.1137%2F0602010. 23

[217] Zahari Zlatev. Use of Iterative Refinement in the Solution of Sparse Linear Systems.

SIAM Journal on Numerical Analysis, 19(2):381–399, April 1982. doi: 10.1137/0719024.

URL https://doi.org/10.1137/0719024. 44, 45, 56, 112, 119

https://doi.org/10.1137/0913048
https://doi.org/10.1137%2F0913035
https://doi.org/10.1137%2F0913035
https://doi.org/10.1090/s0002-9904-1947-08909-6
https://doi.org/10.1090/s0002-9904-1947-08909-6
https://doi.org/10.1137/0909010
http://www.alanturing.net/turing_archive/archive/l/l10/l10.php
http://www.alanturing.net/turing_archive/archive/l/l10/l10.php
https://doi.org/10.1007/978-3-319-17353-5_2
https://doi.org/10.1137%2F0602010
https://doi.org/10.1137/0719024


BIBLIOGRAPHY 205

[218] Mawussi Zounon, Nicholas J. Higham, Craig Lucas, and Françoise Tisseur. Per-

formance impact of precision reduction in sparse linear systems solvers. PeerJ

Computer Science, 8:e778, January 2022. doi: 10.7717/peerj-cs.778. URL https:
//doi.org/10.7717/peerj-cs.778. 52, 56, 121

https://doi.org/10.7717/peerj-cs.778
https://doi.org/10.7717/peerj-cs.778




Appendix

This annex is devoted to provide the full details for the proof of Theorem 5.2 in chapter 5.

To prove Theorem 5.2, we essentially need to adapt the analysis of Paige et al. [176,

sect. 8], the results from the previous sections of this article being almost unchanged. In

particular, [176, sect. 3] reviews the MGS algorithm, [176, sect. 4]makes the link between the

MGS and the Arnoldi algorithm, [176, sect. 5] analyzes the impact of the loss of orthogonality

in MGS which has strong consequences on the analysis, [176, sect. 6] exhibits the existence

of a key iteration which allows proving the convergence, and [176, sect. 7] provides stability

results for the solution of the LS problem with MGS. Note that the original notation of Paige

et al. [176] has been slightly adapted to be consistent with the notation of this manuscript

inherited from Carson and Higham [44; 45].

The proof is essentially composed of three steps: the inclusion of the arbitrary matrix–

vector product (5.5) in [176, eq. (4.3)] and the following consequences on, first, the stability

result of the MGS-GMRES least squares solutions and, second, the stability result of MGS-

GMRES for the solution of the linear system (5.4).

Arbitrary matrix–vector product. In our version of MGS-GMRES we consider a product

with B satisfying (5.5). We now show that considering (5.5) with εp ̸= γ
g
n mainly changes

[176, eq. (4.3)]. Let us consider ÒVk = [bv1, . . . , bvk ] ∈Rn×k , the matrix of computed basis vectors,

and V̇k = [v̇1, . . . , v̇k ] the same matrix but with its columns correctly normalized; that is, for

j ≤ k ,

bv j = v̇ j +∆v (1)j , ∥∆v (1)j ∥2 ≤ eγg
n , (1a)

ÒVk = V̇k +∆V (1)k , ∆V (1)k = [∆v (1)1 , . . . ,∆v (1)k ], (1b)

where∆v (1)j is the error for the normalization of bv j and∆V (1)k is the accumulated error for

the normalization of the basis at step k . By (5.5) and (1), we obtain

fl(P bv j ) = P (v̇ j +∆v (1)j ) + f j (2a)

= P v̇ j +∆v (2)j , (2b)

207



208 APPENDIX

where ∆v (2)j = P∆v (1)j + f j satisfies ∥∆v (2)j ∥2 ≲ (εp + eγ
g
n )∥P ∥F since ∥v̇ j ∥2 = 1 and ∥ f j ∥2 ≲

εp∥P ∥F ∥v̇ j +∆v (1)j ∥2. We therefore obtain

fl(P ÒVk ) = P V̇k +∆V (2)k , ∥∆V (2)k ∥F ≲ k 1/2(εp + eγ
g
n )∥P ∥F , (3)

where∆V (2)k contains the error for both the product and the normalization at the kth itera-

tion. (3) gives a new [176, 4.3].

Useful results from the original analysis. We now provide few results from Paige et al. [176]
that we need for the rest of the proof. We first recall the theorem of [176, sect. 2].

Theorem 1 ([176, Thm. 2.4]). Let B ∈Rn×k have rank s and singular valuesσ1 ≥ · · · ≥σs > 0.

For c ∈ Rn and scalar φ ≥ 0 define by ≡ B †c , br ≡ c − B by , σ(φ) ≡σs+1([cφ, B ]) and δ(φ) ≡
σ(φ)/σs . If brφ ̸= 0 thenσ(φ)> 0, and ifφ0 ≡σs /∥c ∥ then δ(φ)< 1 ∀φ ∈ [0,φ0),

σ2(φ)(φ−2+ ∥by ∥2
2)≤ ∥br ∥

2
2 ≤σ

2(φ)(φ−2+ ∥by ∥2
2/[1−σ

2(φ)]), ∀φ > 0 s.t. δ(φ)< 1. (4)

We summarize the results [176, Eqs. (6.1)–(6.3)] in the following. We note bBm = [q , fl(P ÒVm )],
Paige et al. [176] proved that if

m̄ is the first integer such that κ2(V̇m̄ )> 4/3 (5)

we obtain the following relations

m̄eγnκF ( bBm̄ )> 1.8, soσmin( bBm̄ D )< 8m̄eγn∥ bBm̄ D ∥F ∀ diagonal D > 0, (6)

and

κ2(V̇j ), σ
−1
min(V̇j ), σmax(V̇j )≤ 4/3, j = 1, . . . , m̄ −1. (7)

MGS-GMRES least squares solution. In [176, sect. 7], MGS was already proven backward

stable for solving the problem

arg min
y

∥q −C y ∥2, r (y )≡ q −C y , C ∈Rn×(m−1). (8)

We need to extend this result for C = fl(P ÒVk ) = P V̇k +∆V (2)k . Let k be the kth step of MGS-

GMRES such that k < m̄ with m̄ satisfying (5). Let bBk+1 ≡ [q , P V̇k +∆V (2)k ] and∆Ck (y ) and

∆qk (y ) be the errors on the MGS least squares solution [176, Eq. (7.13)]. Then [176, eq. (8.1)]
becomes

byk = arg min
y

∥rk (y )∥2, rk (y )≡ q +∆qk (y )− [P V̇k +∆V (2)k +∆Ck (y )]y , (9)

where

∥[∆qk (y ),∆Ck (y )]e j ∥2 ≤ eγ
g
k n∥B̂k+1e j ∥2, j = 1, . . . , k +1; (10a)



APPENDIX 209

∥∆V (2)k ∥F ≲ k 1/2(εp + eγ
g
n )∥P ∥F , ∥∆qk (y )∥2 ≤ eγ

g
k n∥q∥2, (10b)

∥∆V (2)k +∆Ck (y )∥F ≲ (k 1/2εp + eγ
g
k n )∥P ∥F . (10c)

The last bound (10c) is computed as follow, as the first bound on ∥[∆qk (y ),∆Ck (y )]e j ∥2

can be extended to the Frobenius norm considering ∥∆Ck (y )∥2
F =
∑

j ∥∆Ck (y )e j ∥2
2, then

we can write

∥∆Ck (y )∥F ≤ eγ
g
k n∥P V̇k +∆V (2)k ∥F ≤ eγ

g
k n (∥P V̇k∥F + ∥∆V (2)k ∥F ) (11a)

≈ eγg
k n∥P V̇k∥F ≤ eγ

g
k n∥P ∥F ∥V̇k∥2 (1) (11b)

≤ 4/3× eγg
k n∥P ∥F . (2) (11c)

(1) since ∥AB∥F ≤ ∥A∥2∥B∥F , ∥H ∥F = ∥H T ∥F and ∥H ∥2 = ∥H T ∥2.

(2) since ∥V̇k∥2 =σmax(V̇k )≤ 4/3 from (7).

Thus,

∥∆V (2)k +∆Ck (y )∥F ≲ (k 1/2εp + eγ
g
k 1/2n

)∥P ∥F + eγ
g
k n∥P ∥F (12a)

≲ (k 1/2εp + eγ
g
k n )∥P ∥F . (12b)

It can then be concluded from (9) that the least squares solution ŷk is backward stable for

min
y
∥q −P V̇k y ∥2. (13)

MGS-GMRES for the solution of the linear system. Our goal is now to prove that at a certain

step k the computed byk also provides a backward stable solution bxk = fl(ÒVk byk ) to the system

P x = q . This part is challenging because of the loss of orthogonality of the basis Vk . To do

so, we show that, at the (m̄ −1)th iteration, MGS-GMRES has computed a backward stable

solution of the system. From now, we set k such that k ≡ m̄−1≤ n , we rewrite [176, eq. (8.2)]
as

rk (byk ) = qk −Pk byk , qk ≡ q +∆qk (byk ), Pk ≡ P V̇k +∆V (3)k (byk ), (14a)

∥∆qk (byk )∥2 ≤ eγ
g
k n∥q∥2, ∆V (3)k (y )≡∆V (2)k +∆Ck (y ), (14b)

∥∆V (3)k (y )∥F ≲ (k 1/2εp + eγ
g
k n )∥P ∥F , (14c)

where∆V (3)k (y ) contains the errors on the product, on the normalization, and on the com-

putation of the least square solution via MGS. The main idea of what follows is to use

the scaling invariance of MGS to scale the right-hand side q by some scalar φ and use

Theorem 1 to bound the residual. We write D ≡ diag(φ, Ik ) for any scalar φ > 0. Since
bBk+1 = [q , P V̇k +∆V (2)k ], from (14) we have

[qkφ, Pk ] = bBk+1D +∆Bk D , ∆Bk ≡ [∆qk (byk ),∆Ck (byk )]. (15)



210 APPENDIX

We now bound the quantities ∥∆Bk D ∥F , | bBk+1D ∥F and ∥qk∥2. We begin with ∥∆Bk D ∥F ,

∥∆Bk D ∥F ≤ eγ
g
k n∥ bBk+1D ∥F = eγ

g
k n∥[qkφ, Pk ]−∆Bk D ∥F (1) (16a)

≤ eγg
k n (∥[qkφ, Pk ]∥F + ∥∆Bk D ∥F ) (16b)

≤ eγg
k n (∥[qkφ, Pk ]∥F + eγ

g
k n∥ bBk+1D ∥F ). (16c)

(1) coming from (10a) ∥∆Bk e j ∥2 ≤ eγ
g
k n∥ bBk+1e j ∥2.

So we have eγ
g
k n (1− eγ

g
k n )∥ bBk+1D ∥F ≤ eγ

g
k n∥[qkφ, Pk ]∥F , giving

∥∆Bk D ∥F ≤ eγ
g
k n∥ bBk+1D ∥F ≤ eγ

g ′
k n∥[qkφ, Pk ]∥F , eγ

g ′
k n =
eγ

g
k n

1− eγg
k n

, (17)

assuming eγ
g
k n ≪ 1. In the same fashion we can also write

∥ bBk+1D ∥F = ∥[qkφ, Pk ]−∆Bk D ∥F ≤ ∥[qkφ, Pk ]∥F + eγ
g
k n∥ bBk+1D ∥F , (18)

it follows

∥ bBk+1D ∥F ≤
1

1− eγg
k n

∥[qkφ, Pk ]∥F . (19)

In addition, as qk = q +∆qk (byk ) and ∥∆qk (byk )∥2 ≤ eγ
g
k n∥q∥2 we can state

∥qk∥2 ≤ (1+ eγ
g
k n )∥q∥2. (20)

(15), (17), (19), and (20) combined corresponds to [176, eq. (8.3)]. In addition, according

to (5), k +1= m̄ ≤ n +1 is the first integer such that κ2(V̇k+1)> 4/3. We obtain from (6)

σmin( bBk+1D )< 8(k +1)eγg
n∥ bBk+1D ∥F ≤ eγ

g
k n∥[qkφ, Pk ]∥F , (21a)

∥Pk∥F ≲ ∥P V̇k∥F + (k
1/2εp + eγ

g
k n )∥P ∥F ≤ (4/3+k 1/2εp + eγ

g
k n )∥P ∥F . (1) (21b)

(1) ∥P V̇k∥F can be bounded by same strategy as in (11).

The bound (21) is true starting from a certain iteration k which depends on the problem

and the constants; in particular, it carries the loss of orthogonality analysed in [176, sect. 5

and 6]. It generalizes [176, eq. (8.4)]. We now boundσmin(Pk ) andσmin([qkφ, Pk ]). We know

by the two-norm definition that min∥x∥2=1 ∥P x∥2 =σmin(P ). Therefore, we can write

σmin(Pk ) = min
∥x∥2=1

∥Pk x∥2 ≥ min
∥x∥2=1

∥P V̇k x∥2−∥∆V (3)k (byk )∥2 (22a)

≥σmin(P V̇k )−∥∆V (3)k (byk )∥2 ≳ 3σmin(P )/4− (k 1/2εp + eγ
g
k n )∥P ∥F , (1) (22b)

(1) sinceσmin(AB )≥σmin(A)σmin(B ) and ∥ · ∥2 ≤ ∥ · ∥F .

and

σmin([qkφ, Pk ]) = min
∥x∥2=1

∥[qkφ, Pk ]x∥2 ≤σmin( bBk+1D ) + ∥∆Bk D ∥2 (1) (23a)

≤ eγg
k n∥[qkφ, Pk ]∥F . (2) (23b)



APPENDIX 211

(1) from (15) and using the fact that min( f (x ) + g (x ))≤min f (x ) +max g (x )

(2) from (21) and (17)

The bounds (22) and (23) can be used to analyze an important scalar of Theorem 1,

δk (φ)≡
σmin([qkφ, Pk ])
σmin(Pk )

. (24)

In particular, Theorem 1 provides an upper bound on the residual norm ∥rk (byk )∥2
2 expressed

withφ and δk (φ). A natural way of using it would be to minimize this upper bound accord-

ing to φ. However, Paige et al. [176] argued it would be unnecessarily complicated, they

postulated it is sufficient to show that it exists a valueφ′ ofφ satisfying (25) below.

φ′ > 0, σ2
min(Ak )−σ2

min([qkφ
′, Ak ]) =σ

2
min(Ak )∥ ŷkφ

′∥2
2. (25)

The existence of such aφ′ is obtained as follows. Writing LHS≡σ2
min(Pk )−σ2

min([qkφ, Pk ])
and RHS≡σ2

min(Pk )∥bykφ∥2
2 we want to findφ so that LHS=RHS. Forφ = 0⇒ LHS>RHS,

and φ = ∥byk∥−1
2 ⇒ LHS < RHS, so from continuity, necessarily ∃φ′ ∈ (0,∥byk∥−1

2 ) satisfying

(25). Consequently, using the definitions (24) and (25), we have

δk (φ
′)< 1, (φ′)−2 =

∥byk∥2
2

1−δk (φ′)2
, 0<φ′ < ∥byk∥−1

2 , (26)

and from Theorem 1 we can bound the residual by

∥rk (byk )∥2
2 ≤σ

2
min([qkφ

′, Pk ])((φ
′)−2+ ∥byk∥2

2/[1−δk (φ
′)2]) (27a)

=σ2
min([qkφ

′, Pk ])(2(φ
′)−2) (1) (27b)

≤ (eγg
k n )

2(∥qkφ
′∥2

2+ ∥Pk∥2
F )2(φ

′)−2. (2) (27c)

(1) from (26).

(2) by using (23) and since ∥[qkφ
′, Pk ]∥2

F = ∥qkφ
′∥2

2+ ∥Pk∥2
F .

The previous bound (27) corresponds to [176, eq. (8.9)]. Now that we have a bound on the

residual, we are looking for expressing it in terms of ∥P ∥F , ∥q∥2 and ∥byk∥2. From (21) we

already have a bound on ∥Pk∥F , but we still need to boundφ′ and ∥qkφ
′∥2. Let us consider

first ∥qkφ
′∥2, we have

∥qkφ
′∥2

2 ≤ ∥rk (byk )φ
′∥2

2+ ∥Pk bykφ
′∥2

2 (1) (28a)

= (φ′)2∥rk (byk )∥2
2+ (φ

′)2∥Pk byk∥2
2 (28b)

≤ 2(eγg
k n )

2(∥qkφ
′∥2

2+ ∥Pk∥2
F ) + ∥Pk∥2

F (1−δk (φ
′)2) (2) (28c)

≤ 2(eγg
k n )

2∥qkφ
′∥2

2+ (1+2(eγg
k n )

2)∥Pk∥2
F . (3) (28d)

(1) by simply writing rk (byk ) = qk −Pk byk .

(2) from (27) for the bound on ∥rk (byk )∥2
2 and by using (26) knowing ∥Pk byk∥2 ≤ ∥Pk∥F ∥byk∥2.

(3) by removing the negative term.



212 APPENDIX

Then, it gives

∥qkφ
′∥2

2 ≤
1+2(eγg

k n )
2

1−2(eγg
k n )2
∥Pk∥2

F , (29)

which corresponds to [176, eq. (8.10)]. Let us now consider φ′, we can bound δk (φ′) to

obtain a bound onφ′. We have

δk (φ
′)≲
eγ

g ′
k n∥[qkφ

′, Pk ]∥F

σmin(P )− ( 43 k 1/2εp + eγ
g
k n )∥P ∥F

(1) (30a)

=
eγ

g ′
k n (∥qkφ

′∥2
2+ ∥Pk∥2

F )
1/2

σmin(P )− ( 43 k 1/2εp + eγ
g
k n )∥P ∥F

≤
eγ

g ′
k n (

1+2(eγg
k n )

2

1−2(eγg
k n )2
∥Pk∥2

F + ∥Pk∥2
F )

1/2

σmin(P )− ( 43 k 1/2εp + eγ
g
k n )∥P ∥F

(2) (30b)

≈
eγ

g ′′
k n∥Pk∥F

σmin(P )− ( 43 k 1/2εp + eγ
g
k n )∥P ∥F

≲
eγ

g ′′
k n (4/3+k 1/2εp + eγ

g
k n )∥P ∥F

σmin(P )− ( 43 k 1/2εp + eγ
g
k n )∥P ∥F

(3) (30c)

≈
eγ

g ′′′
k n ∥P ∥F

σmin(P )− ( 43 k 1/2εp + eγ
g
k n )∥P ∥F

. (30d)

(1) by using the definition of δk (φ′), the bounds (22) and (23), and noting that the eγ absorbed the term 4/3.

(2) from (29)

(3) from (21)

Considering the nonsingularity condition (5.6) of our theorem statingσmin(P )≫ n 2 max(ug ,εp )∥P ∥F ,

we can surely say thatσmin(P )≫ (2eγ
g ′′′
k n +

4
3 k 1/2εp + eγ

g
k n )∥P ∥F , which gives

δk (φ
′)≪

1

2
. (31)

This combined with (26) gives

(φ′)−2 ≤ 4∥byk∥2
2/3. (32)

We can now bound the residual (27) using (21), (29) and (32). We have

∥rk (byk )∥2
2 ≤ (eγ

g
k n )

2(∥qkφ
′∥2

2+ ∥Pk∥2
F )2(φ

′)−2 (33a)

≤ (eγg
k n )

2(1+
1+2(eγg

k n )
2

1−2(eγg
k n )2
)∥Pk∥2

F 8∥byk∥2
2/3 (1) (33b)

≲ (eγg
k n )

2(1+
1+2(eγg

k n )
2

1−2(eγg
k n )2
)(4/3+k 1/2εp + eγ

g
k n )

2∥P ∥2
F 8∥byk∥2

2/3 (2) (33c)

≲ (eγg ′
k n )

2∥P ∥2
F ∥byk∥2

2. (3) (33d)

(1) from (29) and (32).

(2) from (21).

(3) removing second order terms.

Thus, it gives

∥rk (byk )∥2 ≲ eγ
g
k n∥P ∥F ∥byk∥2 ≤ eγ

g
k n (∥P ∥F ∥byk∥2+ ∥q∥2), (34)



APPENDIX 213

which corresponds to [176, eq. (8.12)]. However the computed solution of the linear sys-

tem (5.4) is not byk but is bxk = fl(ÒVk byk ), and to complete our proof we have to show that

bxk is a backward stable solution of the system (5.4). If ÒVk byk is a standard matrix vector

product in precision ug the computed solution verifies bxk = fl(ÒVk byk ) = (ÒVk +∆V
y

k )byk , with

|∆V
y

k | ≤ γ
g
k |ÒVk | carrying the error on this product. Then, we can define

∆Pk ≡ [∆V (3)k (byk )−P (∆V
y

k + ÒVk − V̇k )]byk

bx T
k

∥bxk∥2
2

, (35)

satisfying (P +∆Pk )bxk = (P V̇k +∆V (3)k (byk ))byk . It can be verified by writing

(P +∆Pk )bxk = P bxk + (P V̇k +∆V (3)k (byk ))byk

bx T
k bxk

∥bxk∥2
2

(36)

−P (ÒVk +∆V
y

k )byk

bx T
k bxk

∥bxk∥2
2

= (P V̇k +∆V (3)k (byk ))byk . (1)

(1) since
x̂ T

k x̂k

∥x̂k ∥22
= 1 and (V̂k +∆V y

k ) ŷk = x̂k

We want to bound∆Pk , we start from the definition (35)

∥∆Pk∥F ≤ [∥∆V (3)k (byk )∥F + ∥P (∆V
y

k + ÒVk − V̇k )∥F ]
∥byk∥2∥bx T

k ∥2

∥bxk∥2
2

(37a)

= [∥∆V (3)k (byk )∥F + ∥P (∆V
y

k +∆V (1)k )∥F ]
∥byk∥2

∥bxk∥2
. (1) (37b)

(1) from (1).

We know that∥∆V
y

k ∥F ≤ γ
g
k∥ÒVk∥F ≤ γ

g
k [∥V̇k∥F+∥∆V (1)k ∥F ]≈ γ

g
k∥V̇k∥F = k 1/2γ

g
k and∥∆V (1)k ∥

2
F =

∑k
j ∥∆v (1)j ∥

2
2 ≤ k (eγg

n )2; in addition, we have

∥bxk∥2 = ∥(ÒVk +∆V
y

k )byk∥2 ≥ ∥ÒVk byk∥2−∥∆V
y

k ∥F ∥byk∥2 (1) (38a)

≳ (3/4−k 1/2
eγg

n −k 1/2γ
g
k )∥byk∥2 = (3/4− eγ

g
k 1/2n

)∥byk∥2. (2) (38b)

(1) since ∥x + y ∥2 ≥ ∥x∥2−∥y ∥2.

(2) since ∥ÒVk byk∥2 ≥ ∥V̇k byk∥2−∥∆V n
k byk∥2 ≥ (miny

∥V̇k y ∥2
∥y ∥2 −∥∆V n

k ∥F )∥byk∥2 ≥ (σmin(V̇k )−k 1/2
eγg

n )∥byk∥2 and from (7).

These previous bounds on ∥∆V
y

k ∥F ,∥∆V (1)k ∥F , and∥bxk∥2 with the bound (14) on ∥∆V (3)k (byk )∥F

finally give

∥∆Pk∥F ≲ (k 1/2εp + eγ
g
k n +γ

g
k 3/2 + eγ

g
k 1/2n

)(3/4− eγg
k 1/2n

)−1∥P ∥F ≈ (k 1/2εp + eγ
g
k n )∥P ∥F . (39)

As we have ∥bxk∥2 ≤ ∥ÒVk byk∥2+∥∆V
y

k byk∥2)≲ 4/3∥byk∥2 we can write ∥rk (byk )∥2 ≲ eγ
g
k n (∥P ∥F ∥bxk∥2+

∥q∥2). Summarizing and using (34) gives

rk (byk ) = q +∆qk (byk )− (P +∆Pk )bxk , (40a)

∥rk (byk )∥2 ≲ eγ
g
k n (∥P ∥F ∥bxk∥2+ ∥q∥2), (40b)

∥∆qk (byk )∥2 ≤ eγ
g
k n∥q∥2, (40c)



214 APPENDIX

∥∆Pk∥F ≲ (k 1/2εp + eγ
g
k n )∥P ∥F , (40d)

which generalizes [176, eq. (8.15)]. Then the backward stability follows by defining

∆q ′k ≡−
∥q∥2

∥q∥2+ ∥P ∥F ∥bxk∥2
rk (byk ), ∆P ′k ≡

∥P ∥F ∥bxk∥2

∥q∥2+ ∥P ∥F ∥bxk∥2

rk (byk )bx T
k

∥bxk∥2
2

, (41)

satisfying (P +∆Pk +∆P ′k )bxk = q +∆qk (byk ) +∆q ′k . We have

∥∆q ′k∥2 =
∥q∥2

∥q∥2+ ∥P ∥F ∥bxk∥2
∥rk (byk )∥2 ≲ eγ

g
k n∥q∥2, (42)

and

∥∆P ′k∥F ≤
∥P ∥F ∥bxk∥2

∥q∥2+ ∥P ∥F ∥bxk∥2

∥rk (byk )∥2∥bx T
k ∥2

∥bxk∥2
2

≲ eγg
k n∥P ∥F , (43)

giving finally

∥∆Pk +∆P ′k∥F ≲ (k 1/2εp + eγ
g
k n )∥P ∥F , ∥∆qk (byk ) +∆q ′k∥2 ≲ eγ

g
k n∥q∥2. (44)

Consequently, the solution bxk is backward stable for (5.4) relative to εp and ug , and (44) is

providing bounds on its accuracy.


	Abstract
	Résumé
	Remerciements
	Acronyms
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Background
	Floating-point arithmetic
	Basics
	Commonly available floating-point arithmetics in computers
	Low precision (floating-point) arithmetics
	Rounding error analysis notations

	Direct solvers
	LU solver
	Least squares problem and QR solver
	The multifrontal sparse direct solver
	Numerical approximations in sparse factorization

	Iterative solvers
	GMRES
	Preconditioners
	Other iterative solvers


	Iterative refinement history
	Newton's method (17th century)
	From the 40s to the 70s
	From the 70s to the 2000s
	From the 2000s to the 2010s
	From the 2010s to 2022
	Summary

	State-of-the-art iterative refinement
	On the understanding of refining a linear system
	Generalized iterative refinement
	Preliminaries
	Forward and backward errors analyses
	Various practical comments
	Targeting low precisions

	LU-IR3
	Error analysis
	Targeting low precisions

	LU-GMRES-IR3
	Error analysis
	LU-GMRES-IR3 vs LU-IR3
	GMRES-IR

	Extension to least squares problem
	Iterative refinement on the normal equations
	Iterative refinement on the overdetermined system
	Iterative refinement on the augmented system

	Stopping criteria
	Scaling
	Summary

	LU-GMRES-IR in five precisions
	From LU-GMRES-IR3 to LU-GMRES-IR5
	Rounding error analysis
	Error analysis of MGS-GMRES with arbitrary matrix–vector products
	Error analysis of LU-GMRES-IR5 with general ug and up precisions
	Convergence conditions on (A)
	Comments on the results of the analysis

	Identifying meaningful combinations of precisions
	GMRES stopping criterion
	On the cost of refinement iterations
	On the convergence behavior
	Rounding error analysis with stopping criterion

	Numerical experiments
	Random dense matrices
	Real-life matrices from SuiteSparse

	Practical advice
	LU-GMRES-IR5 for least squares problem
	Conclusion

	Iterative refinement for sparse approximate factorizations
	Reducing the computational cost of sparse direct solvers
	Specific features
	Error analysis with approximate factorization
	Approximate factorization model
	Error analysis for LU-IR3
	Error analysis for LU-GMRES-IR5
	Summary of the error analysis and interpretation
	Convergence conditions for BLR and static pivoting

	Performance analysis
	Implementation details
	Experimental setting
	Cast of the factors
	Performance with standard factorization
	Performance with approximate factorizations
	Performance summary
	Scalability and parallelism

	Conclusions

	Iterative refinement with preconditioned GMRES
	State-of-the-art mixed precision strategies for GMRES
	Left-preconditioned MGS-GMRES in mixed precision
	Backward stability of left MGS-GMRES in mixed precision
	Differentiating the precisions ua and um
	Numerical experiments

	M-GMRES-IR6
	Equivalence between restarted GMRES and iterative refinement
	Error analysis and convergence conditions
	Numerical experiments

	Conclusion

	Conclusion
	Summary
	Future work

	Bibliography
	Appendix

